2nd Workshop (WS) May 19-23, 2025

Pla lung meeting room (Indian mackerel room!) (good name for our WS) 7th floor Marine Fisheries Research and Development Division, DOF, Bangkok

<u>Stock assessments</u> (SA) for important species in Thailand

Welcome to the 2nd workshop

Questions & Comments ANY time

Acknowledgments การแสดงความยอมรับ

DOF DG

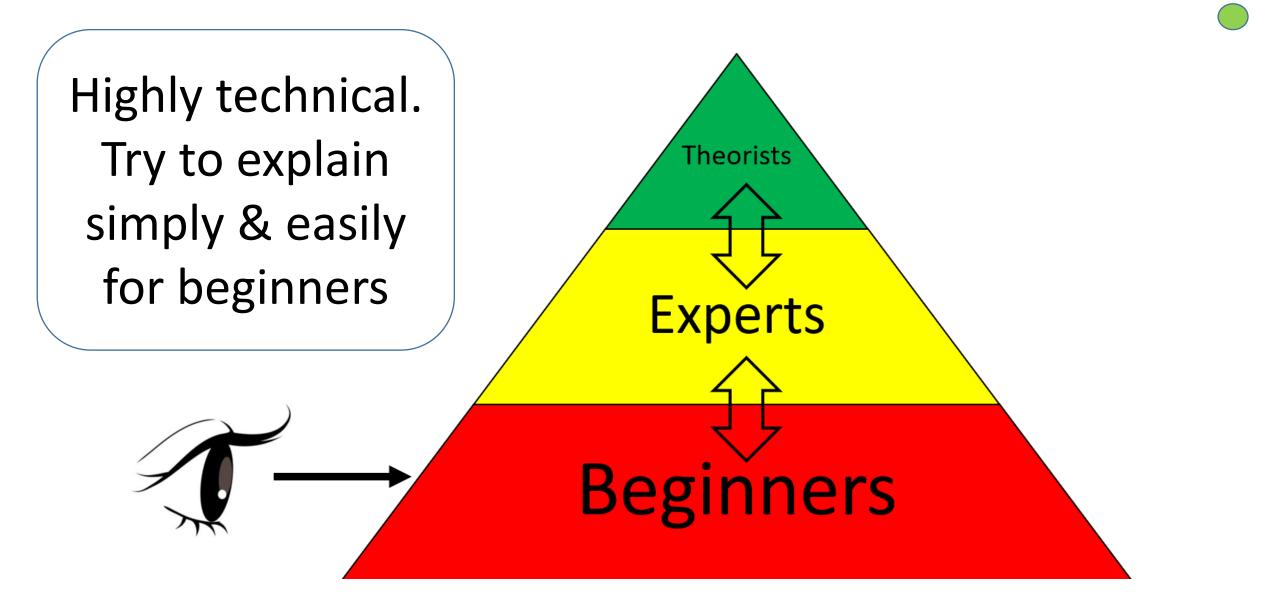
Bancha Sukkaew

Supervisors

Amnuay Kongprom (Division Director)

Pavarot Noranarttragoon

Coordinator


Weerapol Thitipongtrakul

Resource Person

Supapong Pattarapongpan(SEAFDEC/TD)

ALL Participants

Short mackerel WG members Orawan Prasertsook Nipa Kulanujaree Weerapol Thitipongtrakul **Demersal fish WG members** Weerapol Thitipongtrakul Carp WG members Nipa Kulanujaree Wiparat Thong-ngok Kajitpan Jarernnate

No equations (Math) Language (English)

But you need → Basic SA knowledge (F, r, K etc.)(see next page)
Otherwise, a bit difficult to follow
→ Study, Ask, Learn, study.. Ask, ASK aSK

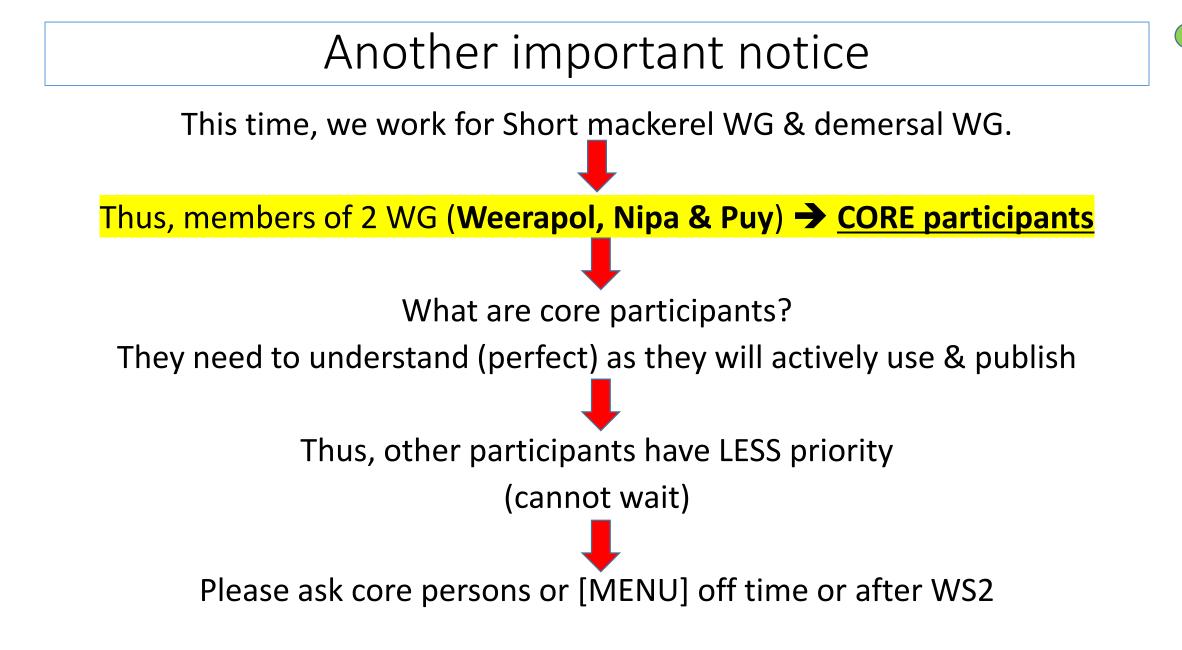
You need also **Basic English Skill**

ACRONYMS

AR	AutoRegressive model
ASPIC	A Stock-Production Model Incorporating Covariates
B _{MSY}	Total biomass or Spawning Stock Biomass at MSY
Cl	Confidence Interval
CPUE	Catch Per Unit Effort
CV	Coefficient of Variation
DevTools	R package for web-developer tool
EC	Equilibrium Condition
F _{MSY}	Fishing mortality at MSY
GitHub	Git (file management tool) + Hub(center) (Internet hosting service)
HCR	Harvest Control Rule
JABBA	Just Another Bayesian Biomass Assessment
JABBA_Manager	Menu-driven software for JABBA
JAGS	Just Another Gibbs Sampler
MASE	Mean Absolute Scaled Error
МСМС	Markov Chain Monte Carlo methods

MSY	Maximum Sustainable Yield
OBS	Observed or Observation
PM	Production Model
POR	Portugal
РРС	Posterior Predictive Check
PPMR	Prior to Posterior Median Ratio
PPVR	Prior to Posterior Variance Ratio
psi	Depletion rate (B1/K)
R	Open-source & free programming language for statistical analyses & others
Reshape2	R package to transform data between wide and long formats.
RMSE	Root Mean Square Error
Sigma2	Process variance
SpiCT	Stochastic surplus production model in continuous time
SWO	Swordfish
ТАС	Total Allowable Catch
ТВ	Total Biomass
TB _{MSY}	Total Biomass at MSY

Important note


To learn JABBA (technical, lot of processes & decisions) Take Many years (not only by 1 WS) (Surface) Especially practitioner (real users) Need to work with [MENU]

Before start, 2 training materials

(1)PowerPoint (for Day 1) 11MB via email Hope that you got it

(1)Data practice folder 97MB 14MB via USB stick Participants will copy during the morning tea break

ALL Installation Completed CPUE_Manager & JABBA_Manager

Thanks for cooperation

Sorry for push

Why so push ?????

In the past training (not in Thailand), it took <mark>3 days</mark> to solve the <u>un-expected Installation problems</u> after training started.

That is why we now take precautionary approach to start on time (like fisheries under uncertainties)

Provisional WS2 schedule (subject to change depending on situation)

AM 9-1	2 & PM 13-16	30 minutes	health break (AM & PM)			
May		AM	PM	Organized by	Short presentation	Presenter
19	Mon	Introduction	up photo (before the break) n & Practice JABBA+CPUE tandardization	[MENU] (Nishida) and Resource	Merit & Demerit of "Bayesian approach" & "Statistical inference". In which situation, we should use one of 2 methods?	Supapong
20	Tue				Change of Thai Fisheries affecting q catchability.	Weerapol
			Demersal WG		Recent stock assessment of Brushtooth lizardfish Saurida undosquamis by DOF (TB method and/or others (GOT)	Weerapol
21	Wed	Sho	ort mackerel WG		Recent stock assessment of Short mackerel by DOF (TB method and/or others) (GOT)	Puy or Nipa
22	Thu	Prepar	ation of home work	(Supapong) SEAFDEC/TD		
23	Fri	Prenaration of	Submission of your home work & presentation of your home work			
		Carp WG and Sum-up session				

Day 1 Group photo before morning tea break copy Data practice folder (USB) (96MB) during break

List of participants(13): 10 trainees (red box) (3 core)

No	prefix	name	agency	core participants	remark
1	Dr.	Pavarot Noranarttragoon	Marine Fisheries Research and Development Division		Supervisor
2	Mr.	Weerapol Thitipongtrakul	Fishery Resources Assessment Group		coordinator
3	Ms.	Nipa Kulanujaree	Fishery Resources Assessment Group		
4	Ms.	Orawan Prasertsook	Fishery Resources Assessment Group		
5	Ms.	Budsayaphon (JAM)Thongprang	Fishery Resources Assessment Group		young scientist
6	Ms.	Jutima Jangjaiboon	Samutprakarn Marine Research and Development Center		young scientist
7	Ms.	Nitwadee Rittison	Rayong Marine Research and Development Center		young scientist
8	Mr.	Amonthep Khemto	Phuket Marine Research and Development Center		young scientist
9	Mr.	Aphinan Suepsing	Ranong Marine Research and Development Center		young scientist
10	Ms.	Wiparat Thong-ngok	Freshwater Research Division		
11	Ms.	Kajitpan Jarernnate	Freshwater Research Division		
12	Dr.	Supapong Pattarapongpan	SEAFDEC-TD		Resource person
13	Dr.	Tom Nishida	[MENU] Menu-driven stock assessment software development team		Co-organizer

Some one (volunteer) Camera(wo)man Please help to take pictures for records

(not many & only sometimes) (<u>small amount</u> for important scenes)

For new comers

Introduction

[MENU] Menu-driven stock assessment (SA) software development team (since 2005) (21 years) (start TT?)

To provide menu-based software without programming (like window, Excel, Word, applications, etc.)

For new comers

For those cannot use programs, no SA experts, Biologist, student etc. Can do CPUE standardization, SA (such as JABBA) easily & quicky but need many years of practice with us [MENU]

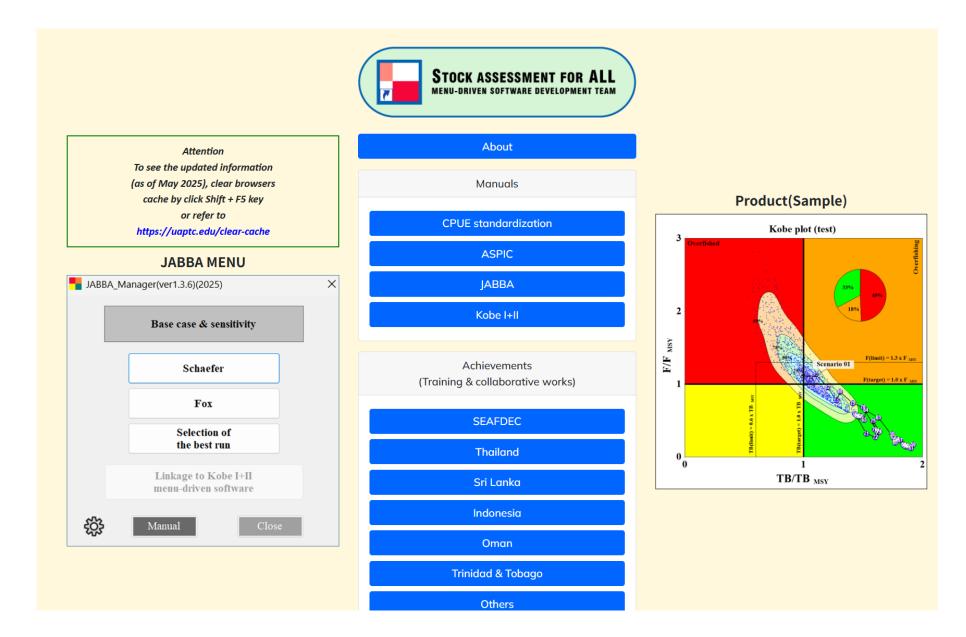
JABBA GOAL 80%??

80% satisfaction -> Good

100% not possible (as no perfect CPUE & catch available) (<u>same as our life for happiness</u>)

We will see many examples later

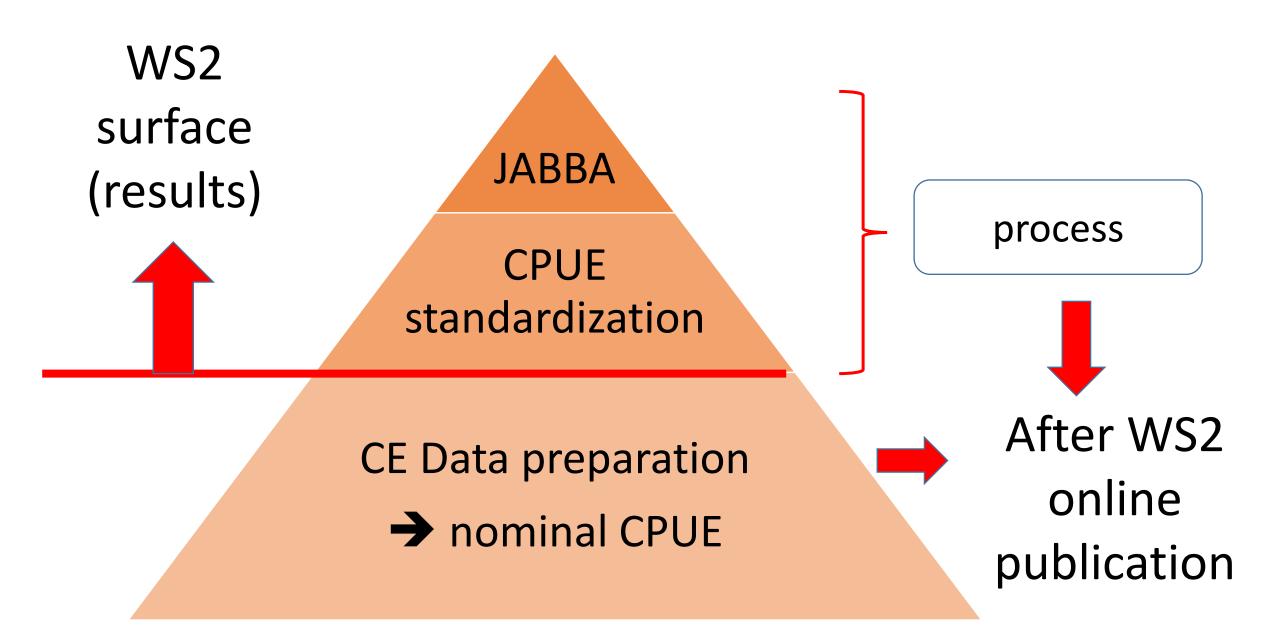
What is TT? Strat-up at TT: Trinidad & Tobago (2005) (ASPIC)



20 years anniversary (2024) (Thailand) (last year)

Visit Our home page https://www.esl.co.jp/products/menu/

Software copyright and terms of use 4 points


- Use yourself for your practice.
- Do not provide copy to <mark>others</mark>.
- Get our permission for official publication, reports etc.
- Users should work with [MENU] for proper usage.

Program + Plan

1. General session (today)									
1.1 Introduction	PP#								
(1) JABBA (theory)	99	AM							
(2) New CPUE standardization	11	AM							
1.2 Demo + Practice									
(1) JABBA	35 + Practice	PM							
(2) CPUE standardization	24 + Practice	PM							
(3) Data process	1 + Practice	after WS2							

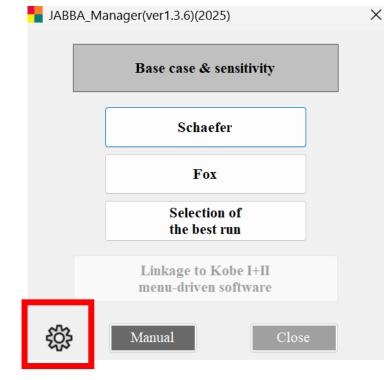
2. WG session

- 2.1 Demersal WG
- 2.2 Short mackerel WG
- 2.3 Carp WG
- 3. Homework (Presentation & submission)
- 4. Sum-up session
 - 4.1 Review, Summary & Recommendation
 - 4.2 Future plan

1.1 JABBA (Introduction)

Based on Software <u>Manual</u> (136pp) (10MB) (use as reference)

Contents


<mark>- Outline</mark>

- Installation
- Implementation
- Demo (case study)

3 ways to get the software Manual

(1) Form Home page <u>https://www.esl.co.jp/products/menu/jabba_manager.pdf</u>

(2) From Call button (software)

(3) From software folder

> PC > Windows (C:) > ESL Softw	ware > JABBA_Mana	ger > sys >		
○ ○ ○ ○ ○ ↓ 並べ替え ~	☰ 表示 Ў …			
□ 名前	更新日時	種類		
source	2025/04/17 14:17	ファイル フォルダー		
JABBA_interface.R	2024/09/09 10:34	R ファイル		
🕭 Manual	2025/04/16 10:30	Adobe Acroba 文書		
none_big	2024/08/13 17:34	PNG ファイル		
none_horizontal	2025/02/05 12:59	PNG ファイル		
none_small	2024/08/13 17:10	PNG ファイル		
C optionR	2025/04/29 15:24	Microsoft Edge HT		
🖾 Selection form	2025/04/16 10:40	Microsoft Excel ワー.		
C system	2025/04/17 14:17	Microsoft Edge HT		

Menu-driven software series (No. 3) JABBA_MANAGER (VER 1.3.6) Manual

(May, 2025)

Tom Nishida (PhD) (Representative)

aco20320@par.odn.ne.jp

Kazuharu Iwasaki (Software Engineer)

[MENU][©] Menu-driven stock assessment software development team(Japan)

https://www.esl.co.jp/assets/menu

Supervised by Dr Sheng-Ping Wang

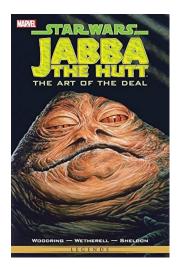
Professor National Taiwan Ocean University Peer reviewed by Dr Doug Butterworth

Professor Emeritus, University of Cape Town

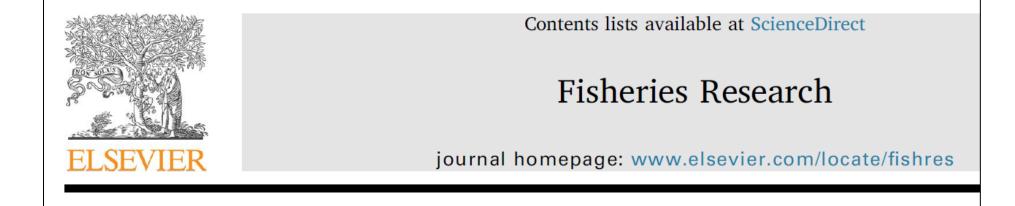
<u>Our 4 technical advisors</u> (personally 30 years together)

Michael Tsai, Ren-Fen Wu and 108 others

6 comments



Butterworth


+ 2 others (Dr Yokoi & Professor CPUE=Shono)

JABBA: Just Another Bayesian Biomass Assessment Henning Winker South Africa) (2018) → sound tough & difficult

JABBA: Just Another Bayesian Biomass Assessment

Henning Winker^{a,b,*}, Felipe Carvalho^c, Maia Kapur^{c,d}

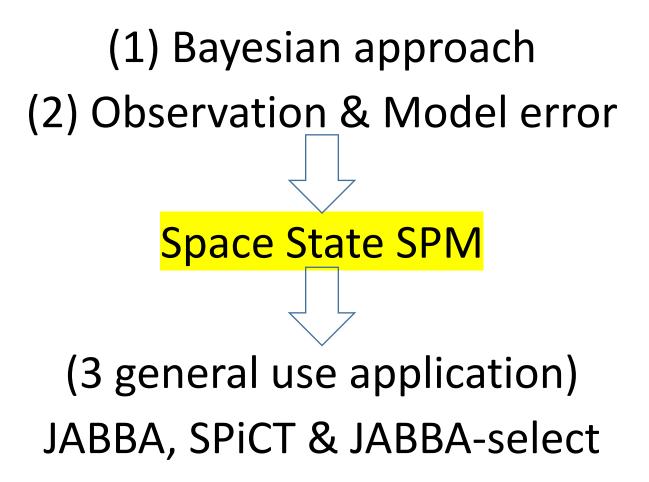
JABBA What types of stock assessment?

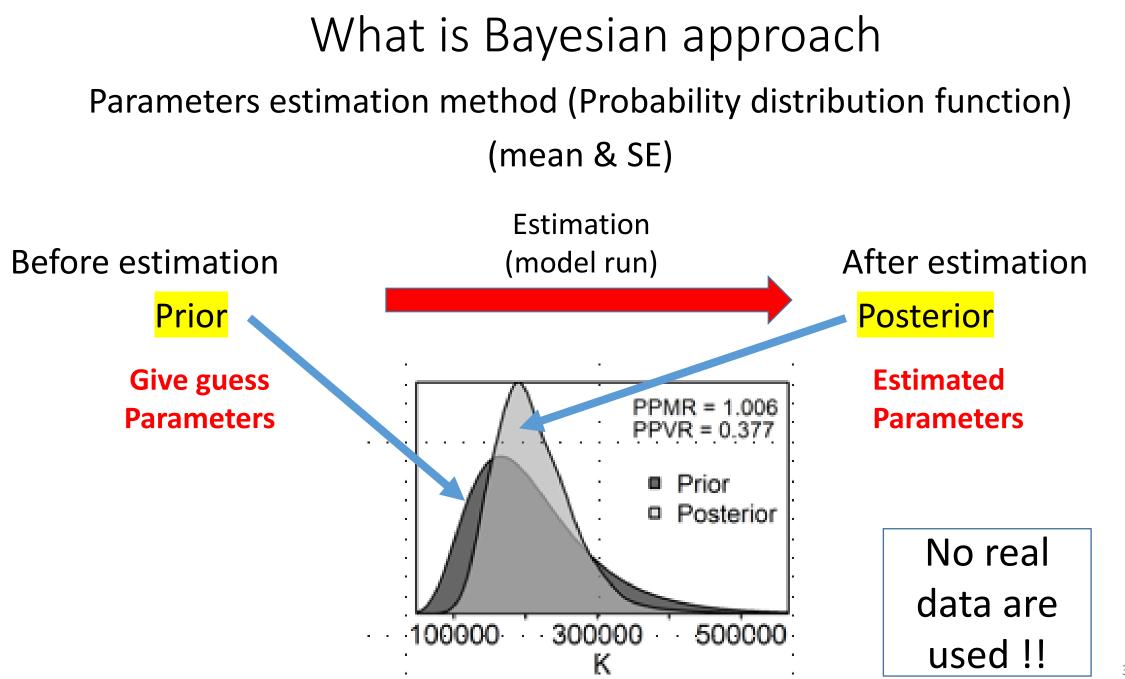
This session → highly technical no worry you can run JABBA

Type 3 : Data rich type with catch, CPUE & Prior

	Data type	Information	Name (main data)	Data period	Reference Point (RP) (MSY, Fmsy, TBmsy, target & limit RP)	Models & Application (examples)	Implementation (R, code, package) (examples)
TYPE 1	Qualitative	Parameters	No data			 ERA (Ecosystem Risk Assessment) PSA (Productivity Susceptibility Analysis) 	✓ R ✓ Package
TYPE 2	Quantitative	 ✓ Real data ✓ Parameter valuses ✓ Priors 	Data Poor (length)	Shorter (< a few years)	Some available only for short period (snap shot SA)	 Length based models (ELEFAN, FiSAT, Y/R, S/R, LBSPR, Thompson & Bell 	 ✓ R ✓ Package (FAO & others)
		(Bayesian approach)	Data Poor (cach)	Longer (> 10 years pre- ferable)	Some avilable (relative & subject to assumptions)	 Delpetion rate assumed (CMSY & OCOM) Depletion rate not assumed (ORCS & SSCOM) Robin-hood methods 	
TYPE 3			Data Rich (catch; CPUE; biological paramter values; and/or priors)		Available Realistic & objective (subject to assumptions) (most important for management)	 Surplus Production models (SPM) (ASPIC, SPICT & JABBA) Age/size structured model (VPA, ASPM, SCAA, SCAS) Integrated models (SS, CASAL) 	 ✓ Own codes (SS) ✓ R (JABBA) ✓ MENU driven (JABBA_Manager)

Nishida (2025)

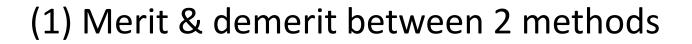

JABBA Surplus Production Model


What kinds of Surplus Production Model Available?

Evolution!?

Evolution of SPM (Surplus Production Model) Color legend: Green (Advantage) and Yellow (data)														
			Features											
				Bayesian approach	Error type				Time					
Evolution	Туре	Author	Non- equilibrium condition		Observation error (CPUE)	Observation error (Catch)	Process error (Model)	Process error (F)	Continuous & Seasonal pattern	Life history and Selectivity	Data	Comments		
}	Original SPM	Shaeffer(1954), PT(1969) & Fox (1970)										Original (not recommended)		
	ASPIC (ver2~5)	Prager (2004~2013)									Annual catch & CPUE	Outdated <mark>(not</mark>		
	ASPIC (ver7)	Prager (2014~)	YES									recommended)		
	SPiCT (Stochastic surplus production model in continuous time)	Pedersen & Berg (2017)			YES	YES		YES	YES		Quarterly or <u>finer-scale</u> catch & CPUE	Space state (all-in-one SPM)		
1	JABBA (Just Another Bayesian Biomass Assessment)	Winker <i>et al</i> (2018)					YES			YES				
	JABBA -Select	Winker <i>et al</i> (2020)								YES	Annual catch, CPUE & <u>length-</u> <u>composition</u>	Advanced JABBA (suitable for moderate data) (recommended)		
	(Note) Representative SPMs are listed, while there are many other SPMs (for details, see Cousido-Roch et all, 2022)													

2 important points for theoretically GOOD SPM



What is different between Bayesian (JABBA) vs. Statistical inference (ASPIC)

Method used in ASPIC

Statistical inference (least mean square)(data based)

Bayesian approach (No data) Based on probability distribution (mean & SE)

(2) In which case (Situation) we should use Bayesian approach (all the case ? or particular case?) and also for statistical inference.

Dr Supapong Pattarapongpan(SEAFDEC/TD) will explain

Why we call Space State (SS) SPM?

What is the SS ? Space (parameters) & State (modelling) Integrated Statistical modelling

Theoretically BEST SPM incorporate [Observation] + [Model] errors Bayesian framework Integrated Statistical SPM Space State SPM

3 Space State SPM

- JABBA : Annual based SPM (discrete)
- JABBA-Select : Annual based SPM with size data (discrete) (life history & Selectivity)
- SPiCT(BEST) : Quarterly + (continuous time) + (catch error) SPM

Why we chose JABBA? Because we do annual based SPM (basic)

JABBA-select can be done(future if size available) SPiCT not possible (fine scale SA & highly technical)

JABBA Outline

(1) Bayesian State-Space Surplus Production Model;

(2)Fox, Schaefer or Pella Tomlinson

(3)Runs quickly & provide

→ key parameters, graphs, diagnostics,
 Retrospective & hindcasting (projection) (ALL in one).
 (1)Many world-wide users.

(1) 2 models (Schaefer + Fox)

Pella Tomlinson is not used

as Schaefer or Fox normally used as standard.

- Schaefer or Fox (results) close to Pella Tomlinson
- Pella Tomlinson (many parameters and complex) → no need

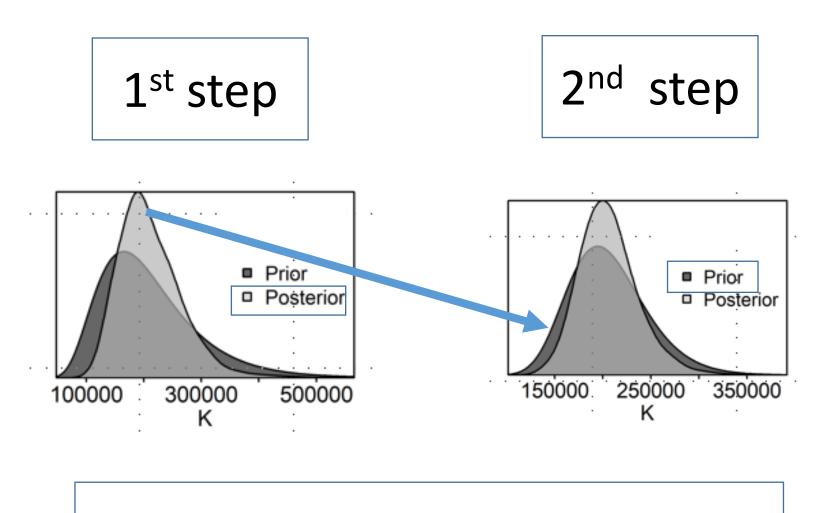
Start 10:50 AM

•COPY DATA PRACTICE 140MB

2 features in this software

(2) **2 steps approach to estimate Parameters**

• 5 key parameters will be


estimated by Bayesian approach

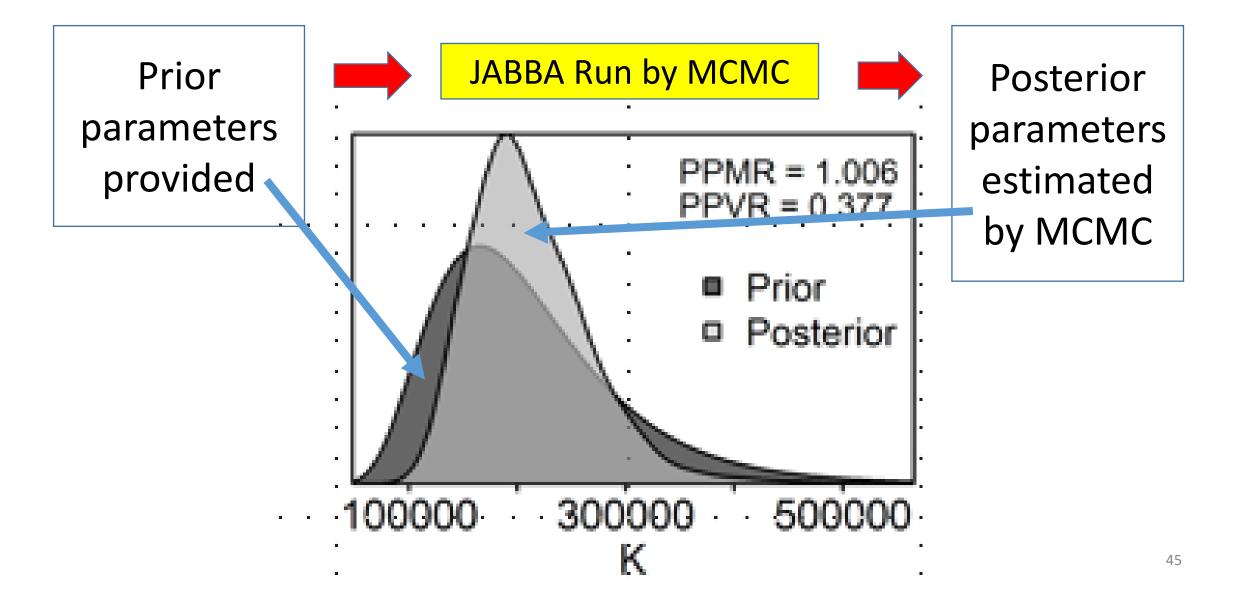
• The 1st estimation will be used

for prior of the 2nd estimation

What dose it mean?

#	parameters	Meaning
1	r	Population growth rate
2	К	Carrying capacity
3	q	Catchability (each fleet)
4	psi	Depletion
5	sigma2	Process error

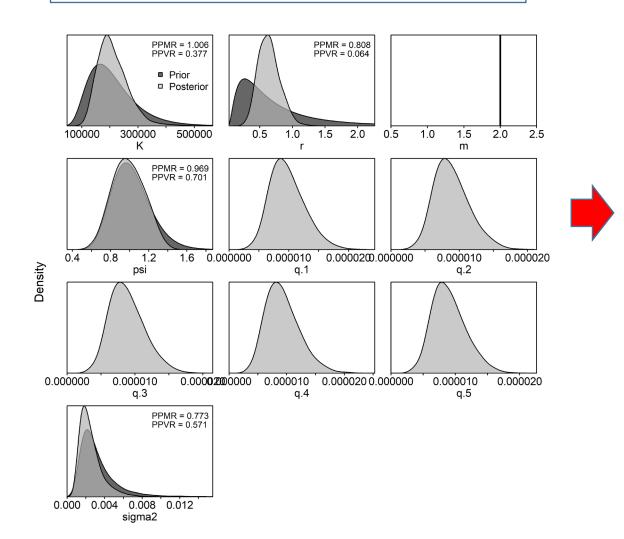
Refinement approach

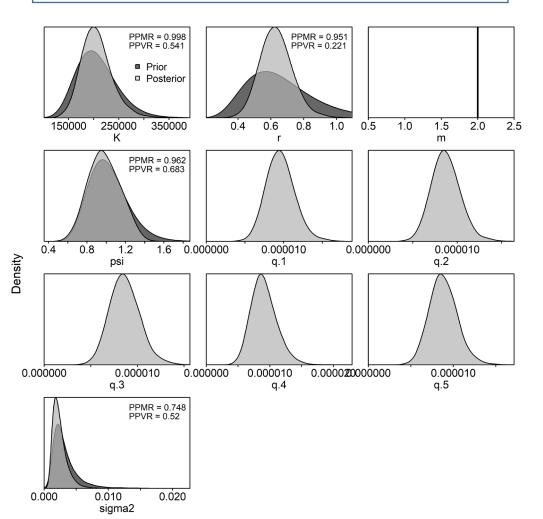

What is MCMC (Markov Chain Monte Carlo)?

Parameter estimation method by <u>re-sampling</u> of the data

(e.g. 1 million times of repetitions)

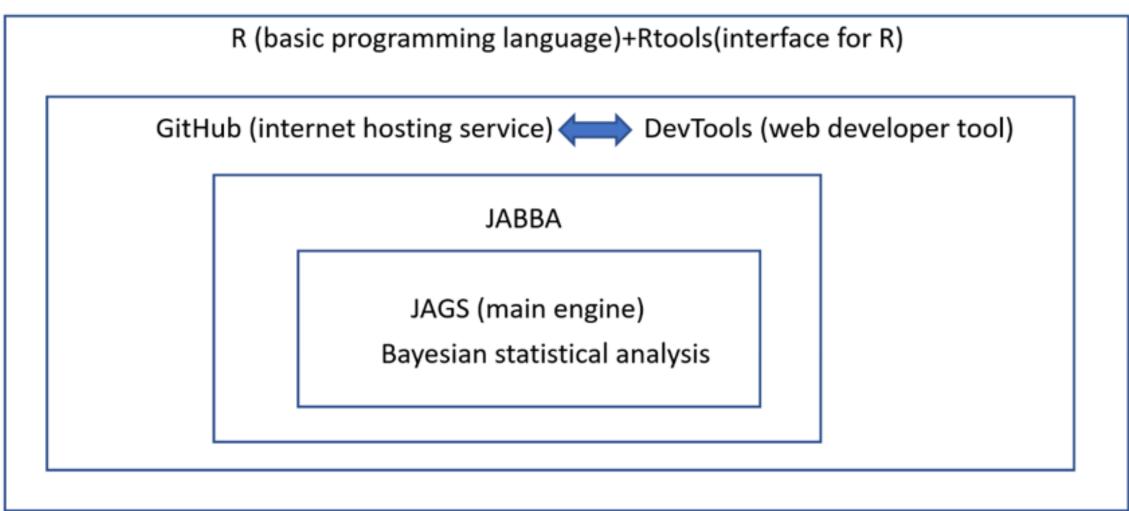
- ➔ To estimate Median & SE
- ➔ Bayesian approach


Estimation procedure by the Bayesian approach by MCMC


5 parameters will be estimated by 2 steps. r, K, q use different function, while psi & signma2 same

	naramatara	Maaning	Model				
#	parameters	Meaning	1st step	2nd step			
1	r	Population growth rate					
2	К	Carrying capacity	constant	log normal			
3	q	Catchability (each fleet)					
4	psi	Depletion	log normal				
5	sigma2	Process error	inverse gamma (4, 0.01)				

1st step (constant)


2nd step (log normal)

5 fleets (5q) model

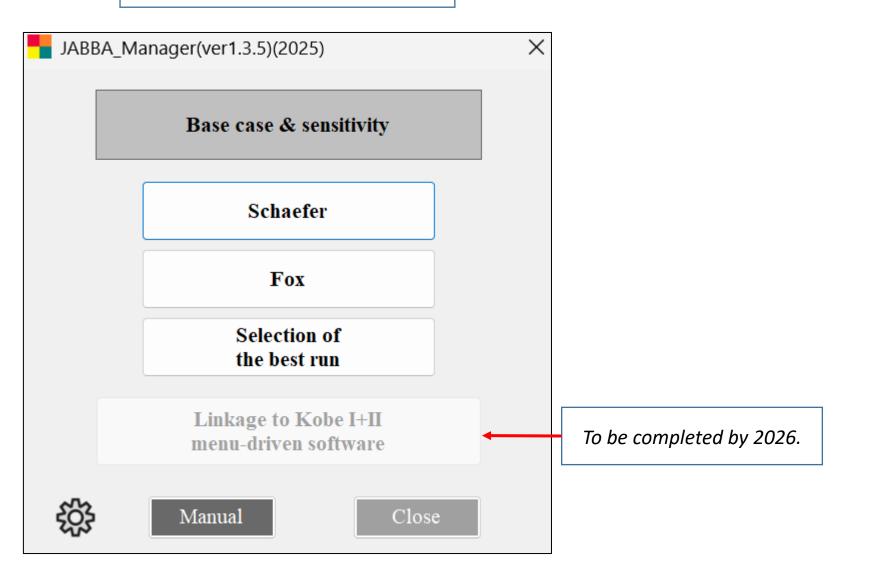
Anyway, you don't touch these technical matters → software covers

But, at lease, you need to know the concept & outlies

Note: GitHub (Internet hosting service) JAGS (Just Another Gibbs Sampler)

1.1 JABBA (Introduction)

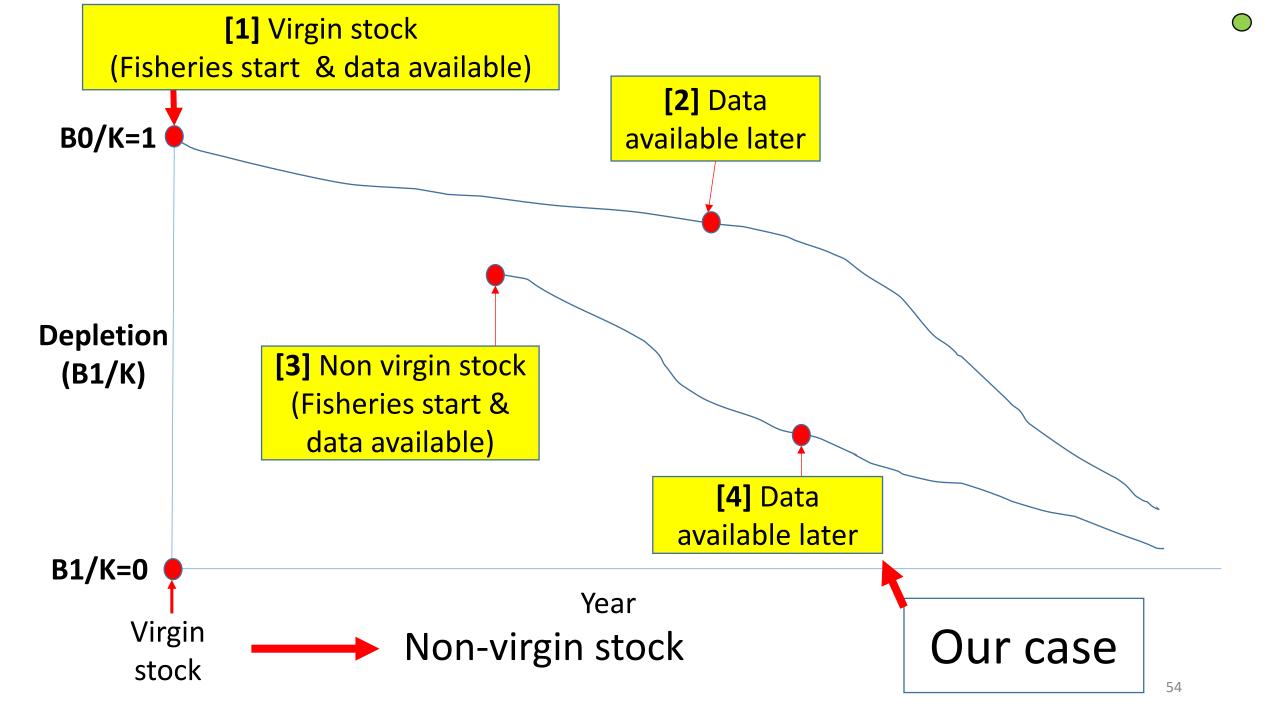
Contents


- Outline
- Installation (completed)
- Implementation
- Case studies

1.1 JABBA (Introduction)

Contents

- Outline
- Installation (completed)
- Implementation
- Case studies



4 cases to implement

What & why are 4 cases?

 \bigcirc

Implementation

Case [1] → direct (normal) approach

Case [2]~[4] → Scenario approach

Case [2]~[4] Why scenario approach ? Why not normal approach? Butterworth, Wang, Nishida & references

 To use direct (normal) estimation approach : Case [1]
 → Virgin stock & data available (Need long, stable & reliable data)
 → Tuna & BILL fish data (RFMO) 1950~ OK

RFMO Regional Fisheries Management Organization

Why scenario approach ? Why not direct approach? Butterworth, Wang, Nishida & references

- If fisheries start after virgin stock → B1/K cannot be estimated
- If normal approach is used for [2]~[4]
 - → Seeded B1/K itself is estimated (NG)

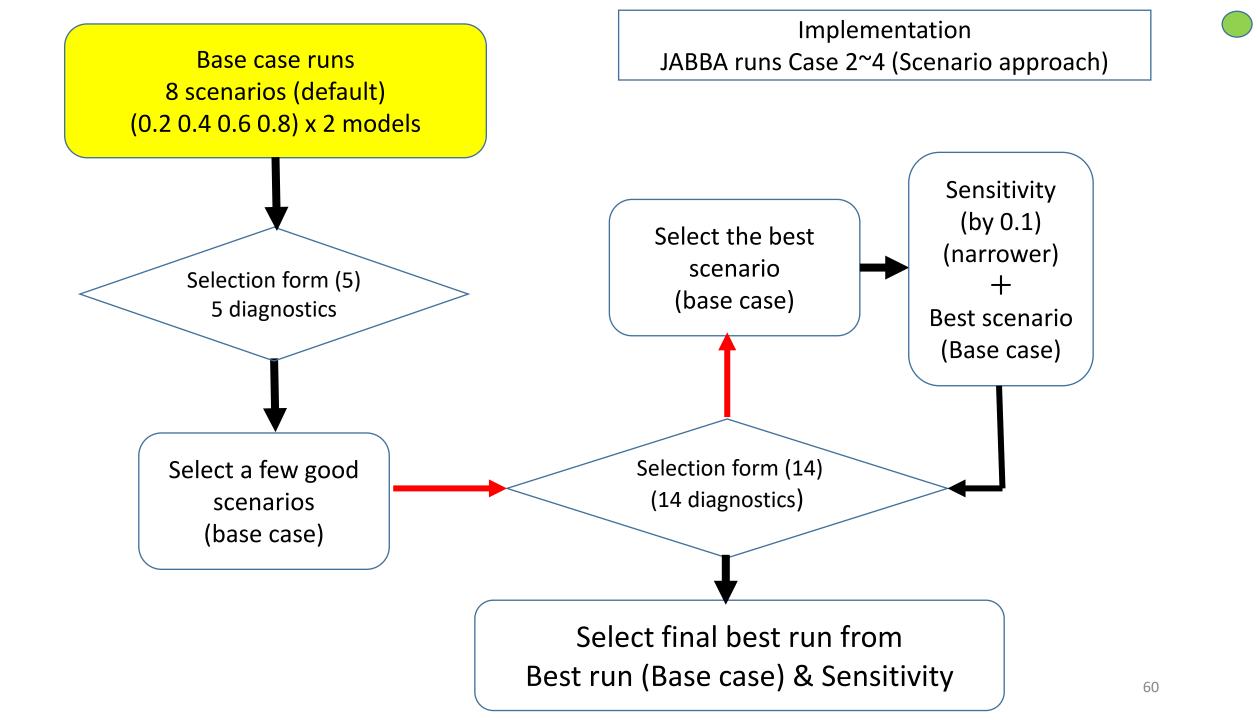
Normally different estimated values

Need Scenario (robust & certain) approach

· · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·				
Initial	Estimated					
Seeding	B1,	/к				
values	(almost same) NG					
(B1/K)						
Depletion	Schaefer	Fox				
0.2	0.21	0.20				
0.4	0.39	0.39				
0.6	0.59	0.58				
0.8	0.80	0.82				
0.6	0.59	0.5				

How to implement cases [2]~[4]?

Our case is mainly [4]


 \bigcirc

Set up scenarios for depletion (BO/K) Model Schaefer & Fox

Default (no pre-knowledge of BO/K)

Default 4 B0/K (0.2 0.4 0.6 0.8) (to search wider range)

→ Then 8 scenarios 4B0/K (depletion) x 2 models

Implementation (Base case) Selection form (5)(MAX case) Don't worry normally much simpler

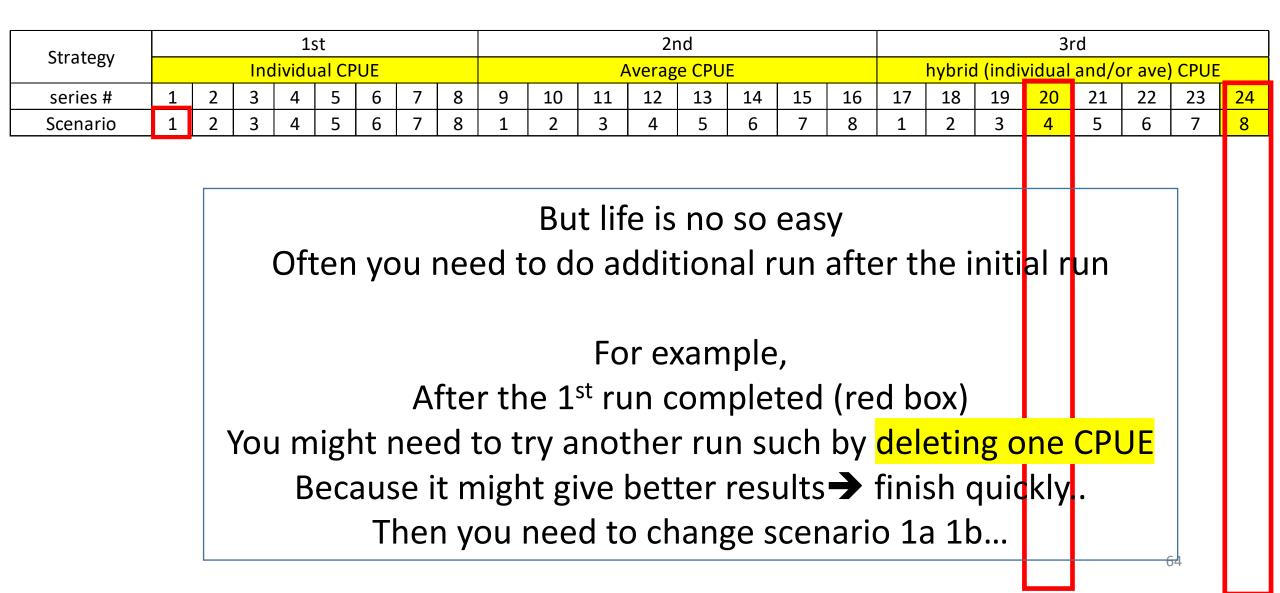
	Strategy to search good CPUE for JABBA (4 fleet) (Max 8 scenarios) (sample) (base case)																								
(Strategy				19	st							2r	nd				3rd							
	Strategy			Inc	lividu	ial CP	UE					A	verag	e CPU	E			hybrid (individual and/or ave) CPUE							
	series #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Scenario	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8
	Model	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	s	f	S	f	S	f
	run ID															AV7-								HY7-	
		s0.2	f0.2	s0.4	f0.4	s0.6	f0.6	s0.8	f0.8	s0.2	f0.2	s0.4	f0.4	s0.6	f0.6	s0.8	f0.8	s0.2	f0.2	s0.4	f0.4	s0.6	f0.6	s0.8	f0.8
	f1(CPUE1)			Inc	lividu	ial CP	UE						Individual CPUE												
	f4(CPUE4)			Inc	lividu	ial CP	UE					P	verag	e CPU	E						(not	used)			
fleet	f3(CPUE3)			Inc	lividu	ial CP	UE					^			F			Average CPUE							
	f4(CPUE4)		Individual CPUE Average CPUE						F	verag	e CPU	E													
	(1) Kobe plot	ok	ok	ok	ok	ok	ng	ng	ng	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ok	ng	ng	ng	ok
	(2) CPUE	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
5	(3) Retro	na	ng	ok	ng	ng	na	na	na	ng	na	ng	ok	ng	ng	na	na	ng	ok	ng	ok	na	na	na	ok
diagnostics	(4) Convergence	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
ulugnostics	(5) Retro&Hind Table	na	ok	ng	ok	na	na	na	na	na	na	ok	ok	ok	na	na	na	ok	ng	ok	ok	na	na	na	ok
	Results	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ok	ng	ng	ng	ok
	Note																								

What is Strategy ? Why we need ?

Case (2~4) → Scenario approaches 3 strategies to change <u>CPUE</u> to find good results

1st Strategy

2nd Strategy


3rd Strategy

Use all CPUE individually (If NG, go to 2nd) Use average CPUE (If NG, go to 3rd) Use combination of individual CPUE and/or Ave CPUE (hybrid approach)

(if NG, finish runs as no good results)

Some times we can finish only 1st Strategy

Scenario # \rightarrow within scenario, Series # \rightarrow whole run

Run ID important to manage runs \rightarrow you can make name

	Stratogy	1st						2nd						
	Strategy	Individual CPUE						Average CPUE						
	series #	3	4	5	6	7	8	9	10	11	12	13		
	Scenario	3	4	5	6	7	8	1	2	3	4	5		
	B0/K (depletion)	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6		
	Model	S	f	S	f	S	f	S	f	S	f	S		
	run ID	IN3-s0.4	IN4-f0.4	IN5-s0.6	IN6-f0.6	IN7-s0.8	IN8-f0.8	AV1-s0.2	AV2-f0.2	AV3-s0.4	AV4-f0.4	AV5-s0.6		
	f1(CPUE1)	Individual CPUE												
fleet	f4(CPUE4)	Individual CPUE					Average CPUE							
neet	f3(CPUE3)	Individual CPUE												
	f4(CPUE4)	Individual CPUE						Average CPUE						
	(1) Kobe plot	ok	ok	ok	ng	ng	ng	ok	ok	ok	ok	ok		
	(2) CPUE	ok	ok	ok	ok	ok	ol	ok	ok	ok	ok	ok		
5	(3) Retro	ok	ng	ng	na	na	r a	ng	na	ng	ok	ng		
_	(4) Convergence	ok	ok	ok	ok	ok	٥k	ok	ok	ok	ng	ok		
diagnostics	(5) Retro&Hind Table	ng	ok	na	na	na	na	na	na	ok	ok	ok		
	Results	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng		

For example, why AV1-s0.2?

AV → 2nd Strategy (Average), 1 → scenario 1, s0.2→ Schaefer(Depletion 0.2) If you like species code (SM)→ SM-AV1-s0.2 OK, let's try scenario 1 using 5 diagnostics (inspection items)

	I	
	Strategy	
	series #	1
	Scenario	1
	B0/K	0.2
	(depletion)	0.2
	Model	S
	run ID	IN1- s0.2
	f1(CPUE1)	
fleet	f4(CPUE4)	
neet	f3(CPUE3)	
	f4(CPUE4)	
	(1) Kobe plot	
	(2) CPUE	
5	(3) Retro	
diagnostics	(4) Convergence	
alagnostics	(5) Retro&Hind	
	Table	
	Results	

What are 5 diagnostics?

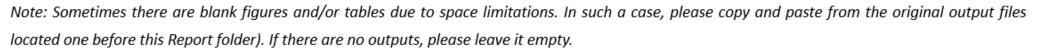
การวินิจฉัย

In page 3-4 (each Report)

Report_SM-IN1-06s (Schaefer)

Contents

Output


Summary of results & diagnoses

1. Convergence

Heidelberger and Welch Statistical test (MCMC)

2. Model fit

- 2.1 CPUE Residuals (Randomness & outliers)
- 2.2 RMSE (Root Mean Square Error)
- 2.3 Prior to Posterior Median/Variance Ratio (PPMR/PPVR)
- 2.4 Posterior Predictive Check (PPC)
- 3. Retrospective analyses (model mis-specification)
- 4. Hindcast analyses (prediction power)
- 5. Estimated parameter values
- 6. Visual inspection
- 7. Next step (Selection of Schaefer or Fox)

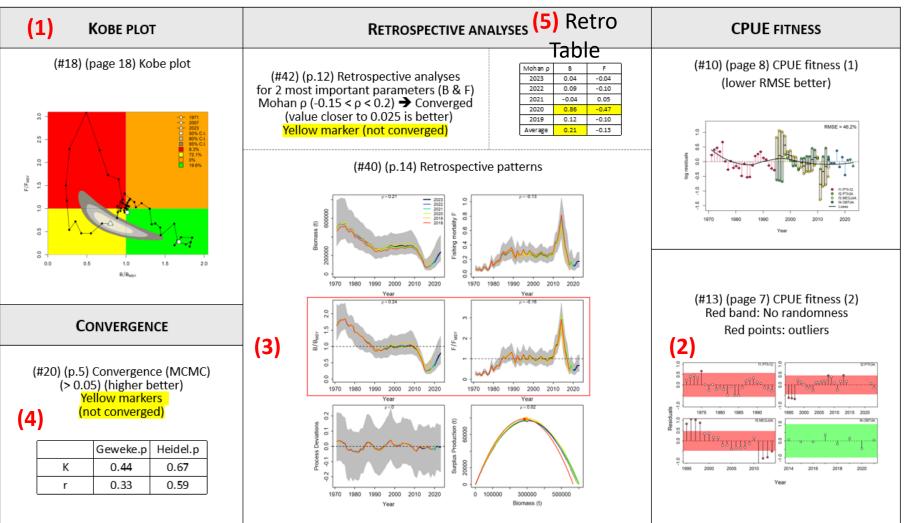
1

Visual inspection

(1) Kobe plot

- (2) CPUE (Autocorrelation) (green)
- (3) Retrospective pattern (B & F)

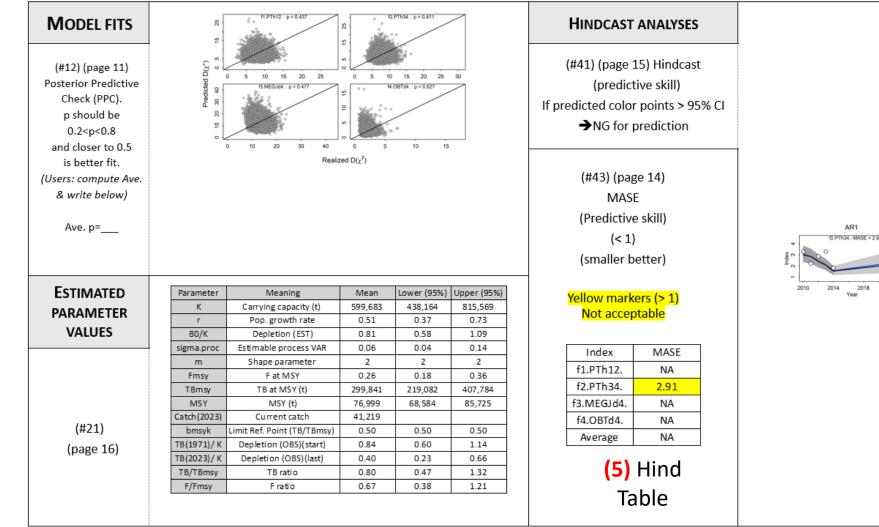
Numerical inspection


- (4) Convergence
- (5) Retro & Hind cast Table

Page 3

SM-IN1-06s(Schaefer)

Summary of results & diagnoses (1/2) (Key diagnoses)


Visual inspection

(1) Kobe plot

- (2) CPUE (Autocorrelation) (green)
- (3) Retrospective pattern (B & F)

Numerical inspection

(4) Convergence(5) Retro & Hind cast Table

5 key diagnosis ->

Page 4

Summary of results & diagnoses (2/2)

SM-IN1-06s(Schaefer)

 \bigcirc

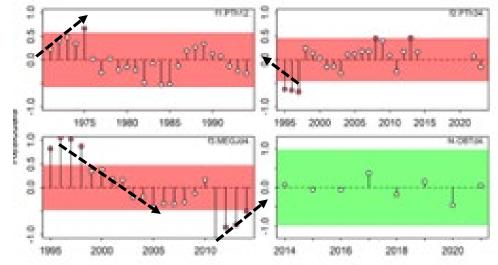
How to use 5 diagnostics?

Visual inspection

- (1) Kobe plot
- (2) CPUE (Autocorrelation) (green)
- (3) Retrospective pattern (B & F)

Numerical inspection

(4) Convergence

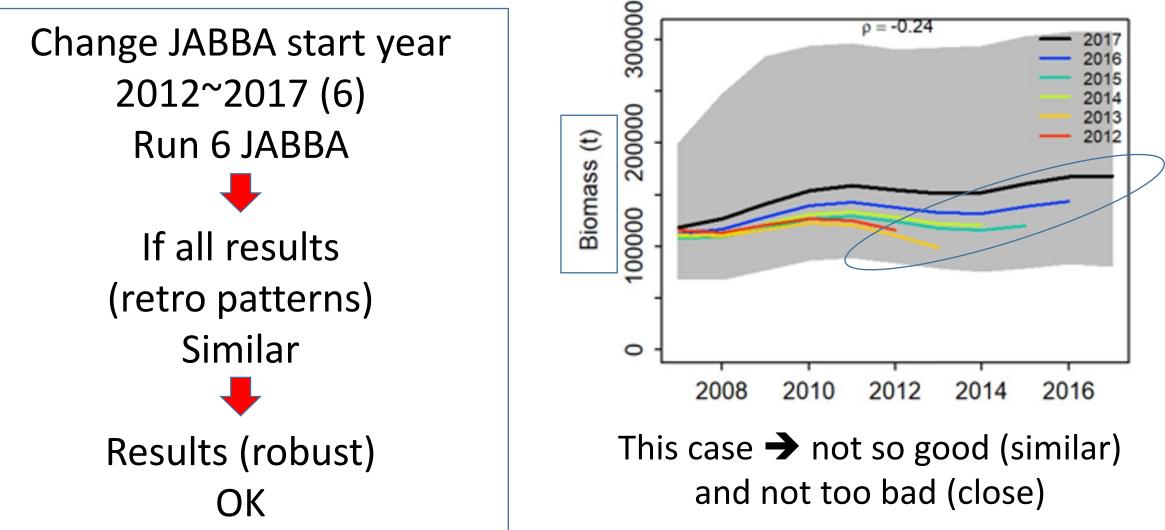

(5) Retro & Hind cast Table

		- .	efer to Report or Mar							
Туре	Contents	Criteria	Judgment							
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	contento	enteria	ОК	NG						
Kobe plot	Stock status	Should reflect the plausible stock status		Too optimistic						
Time series re	esidual CPUE	No autocorrelation, i.e., time series patterns of CPUE should be random and no patterns.	PTh12 PTT PTT PTT PTT PTT PTT PTT PT	1975 1980 1985 1990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
		Outliers	ОК	One outlier Remove then may become green						
Retrospective analyses	Justification of JABBA runs	Retrospective patterns should be similar (especially for B/Bmsy & F/Fmsy)	$Vew \qquad Vew $	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $						
Convergence	All parameters are properly estimated.	Non-significant in Geweke p & Welch p tests	NG for yellow markers	Geweke.p Heidel.p K 0.04 0.22 r 0.97 0.56						

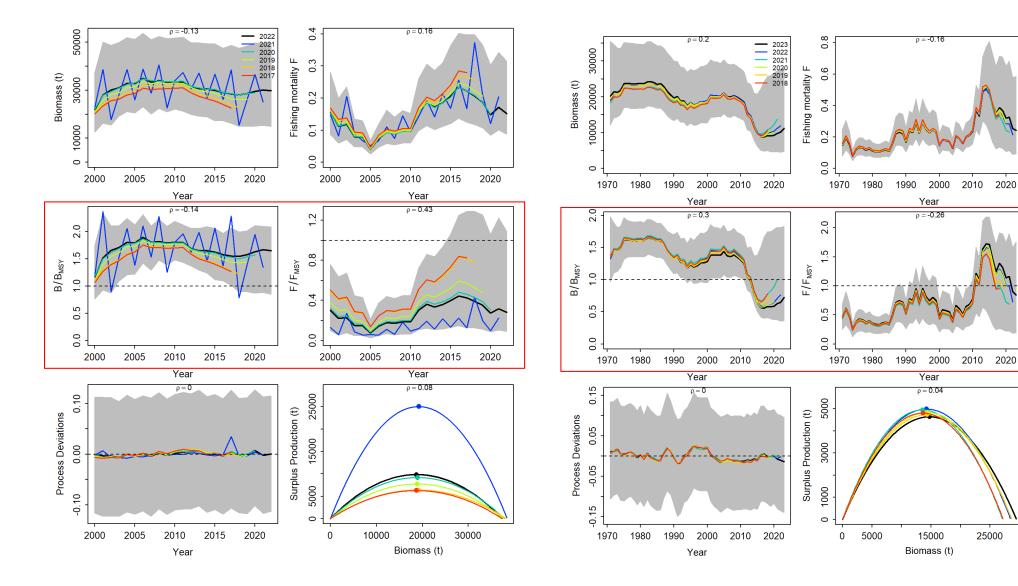
Autocorrelation (1/2)

- In the time series CPUE data, if there are <u>no randomness</u> in their residuals, it is the <u>autocorrelation problem</u>
 - ➔ Cannot use CPUE

• To mitigate this problem, points with particular patterns (not random) and/or (large) outliers in the residual plots need to be removed.



Autocorrelation (2/2)


 Re-run JABBA, then the autocorrelation problem sometime <u>may be solved</u>.

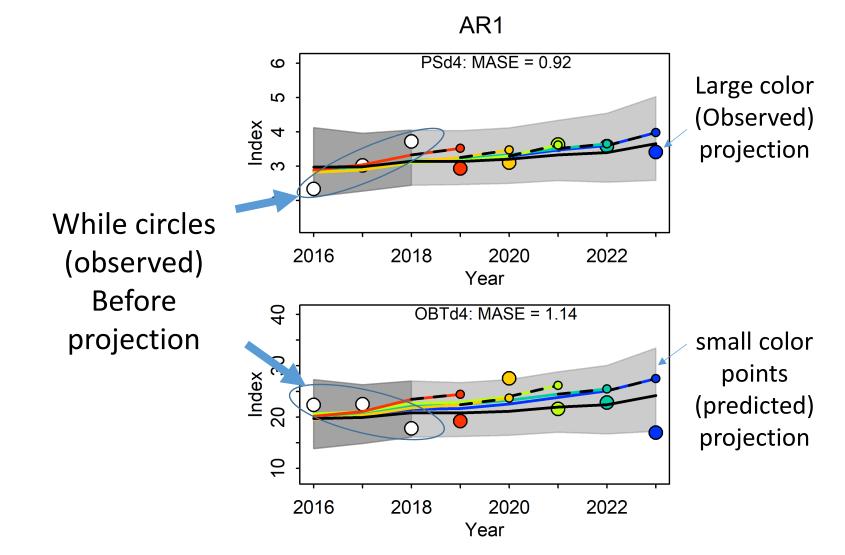
• If still red color, such CPUE data sets should be <u>removed</u>. See red box page 63

Retrospective (past) analyses: to evaluate results OK? Visual inspection (all parameters)

BAD & GOOD Retro Patterns

Not so Good but OK (80% ism)

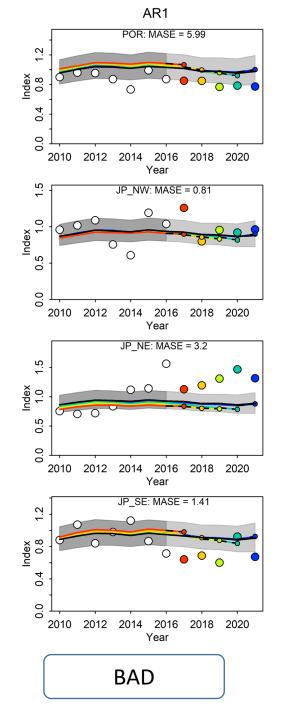
25000

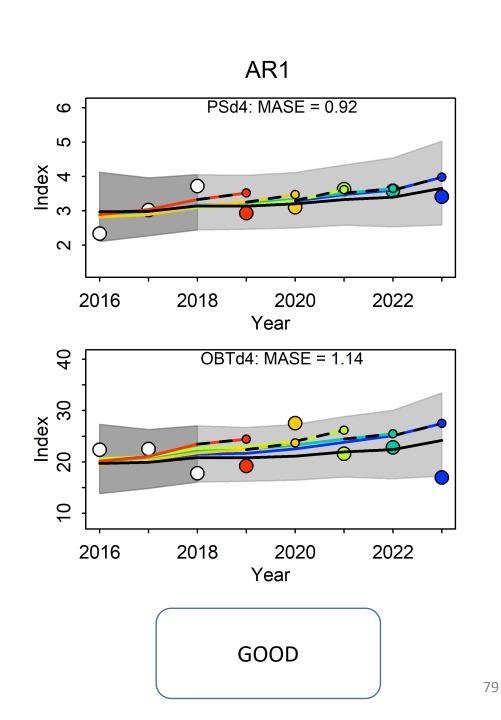

	В	F	Bmsy	Fmsy	procB	MSY	Average
2023	0.17	-0.16	0.18	-0.19	0.01	0.04	0.01
2022	0.41	-0.29	0.59	-0.41	0.00	0.05	0.05
2021	0.10	-0.09	0.12	-0.14	0.00	0.03	0.00
2020	0.16	-0.13	0.29	-0.27	0.00	0.03	0.01
2019	0.15	-0.12	0.34	-0.31	0.00	0.05	0.02
Average	0.20	-0.16	0.30	-0.26	0.00	0.04	0.02

Mohan ρ : -0.15 < ρ < 0.2 \rightarrow converged. If not converged, they are indicated by yellow markers.

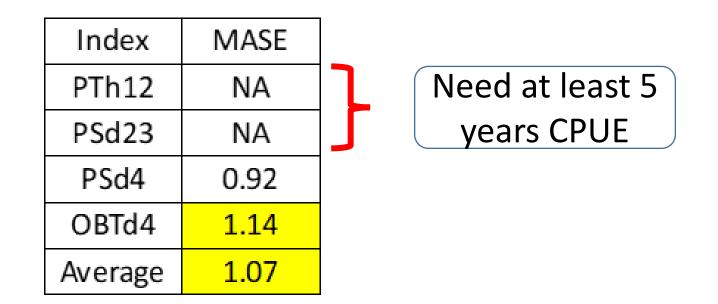
Numerical inspection p value close to 0.025 better.

	P	lausible ra Closer	-	ne Mohan' o 0.025 is l		s.	
15	-0.1	-0.05	0	0.05	0.1	0.15	0.2
		0.05		025			

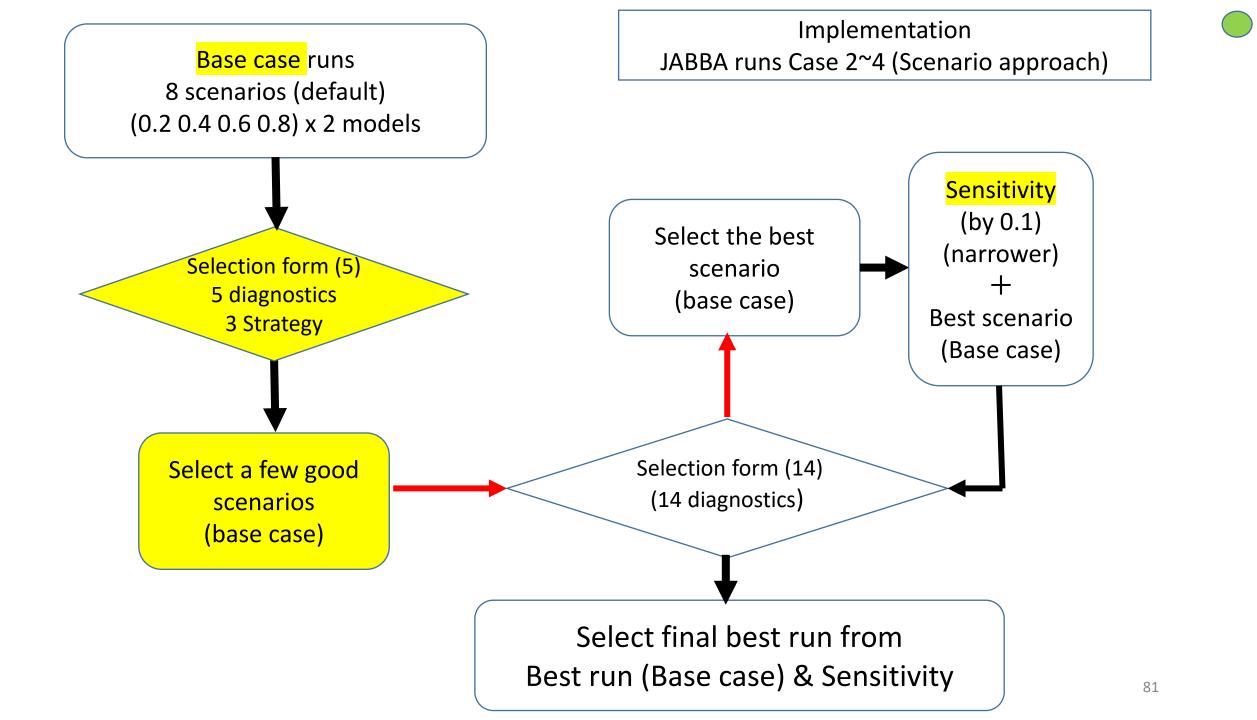

Hindcast analyses: Other way **(future)** of retrospective analyses To evaluate future projection (Power)



Example


BAD & GOOD

Hindcast plots



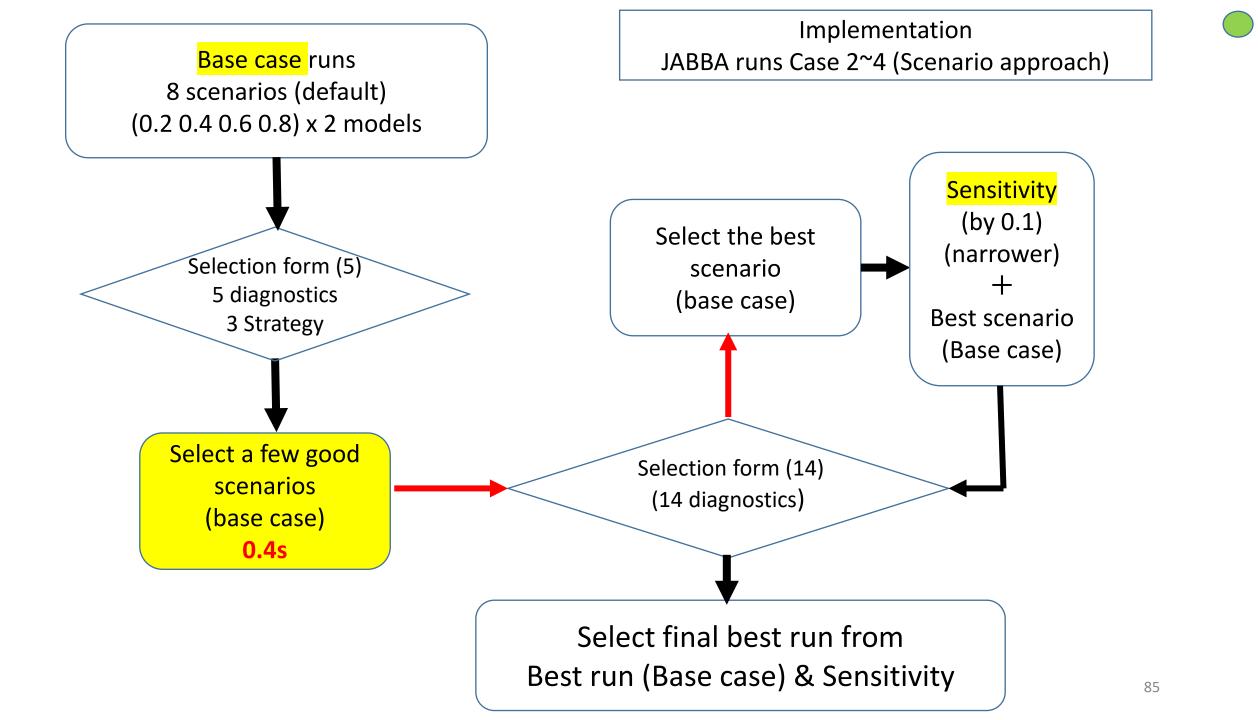
Numerical inspection (MASE)

If MASE (Mean Absolute Scaled Error) < 1 → better prediction ability

MASE ≥ 1 (yellow markers) → Poor prediction power (Larger MASE values, less prediction power)

Only one best runs is found (0.4s) at the 3rd Strategy (hybrid) (long process)

	Stra	ateg	gy to	o se	arcl	n gc	od	CPl	JE f	or JA	ABBA	A (4 fle	eet) (N	Max 8	scenai	rios) (S	sam	ple)	(ba	se ca	ase)				
	Charterer				19	st							21	nd							3	rd			
	Strategy			Inc	lividu	ial CP	UE					A	verag	e CPU	E				hybric	<mark>d (indi</mark>	vidual	and/c	or ave) CPUE	
	series #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Scenario	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8
	Model	S	f	S	f	S	f	s	f	S	f	S	f	S	f	S	f	S	f	s	f	S	f	S	f
	run ID									AV1- s0.2	AV2- f0.2	AV3- s0.4	AV4- f0.4	AV5- s0.6		AV7- s0.8	AV8- f0.8			HY3- s0.4			HY6- f0.6	HY7- s0.8	HY8- f0.8
	f1(CPUE1)		ļ	Inc	lividu	ial CP	UE	<u> </u>	<u></u>				worag	e CPU	г г	1				In	dividu	ial CPL	JE		
fleet	f4(CPUE4)			Inc	lividu	ial CP	UE					F	verag	e CPU	L						(not	used)			
neet	f3(CPUE3)			Inc	lividu	ial CP	UE					,	Woran	ge CPU	F						vorag	e CPU	E		
	f4(CPUE4)			Inc	lividu	ial CP	UE		_				verag		C						verag		C		
	(1) Kobe plot	ok	ok	ok	ok	ok	ng	ng	ng	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ng	ng	ng	ng	ok
	(2) CPUE	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
5	(3) Retro	ng	ng	ok	ng	ng	na	na	na	ng	na	ng	ok	ng	ng	na	na	ng	ok	ok	ok	na	na	na	ok
diagnostics	(4) Convergence	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng
anagriostics	(5) Retro&Hind Table	ok	ok	ng	ok	na	na	na	na	na	na	ok	ok	ok	na	na	na	ok	ng	ok	ok	na	na	na	ok
	Results	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ok	ng	ng	ng	ng	ng


When we stop JABBA run (base case)?

When a few good runs (5 diagnostics) found

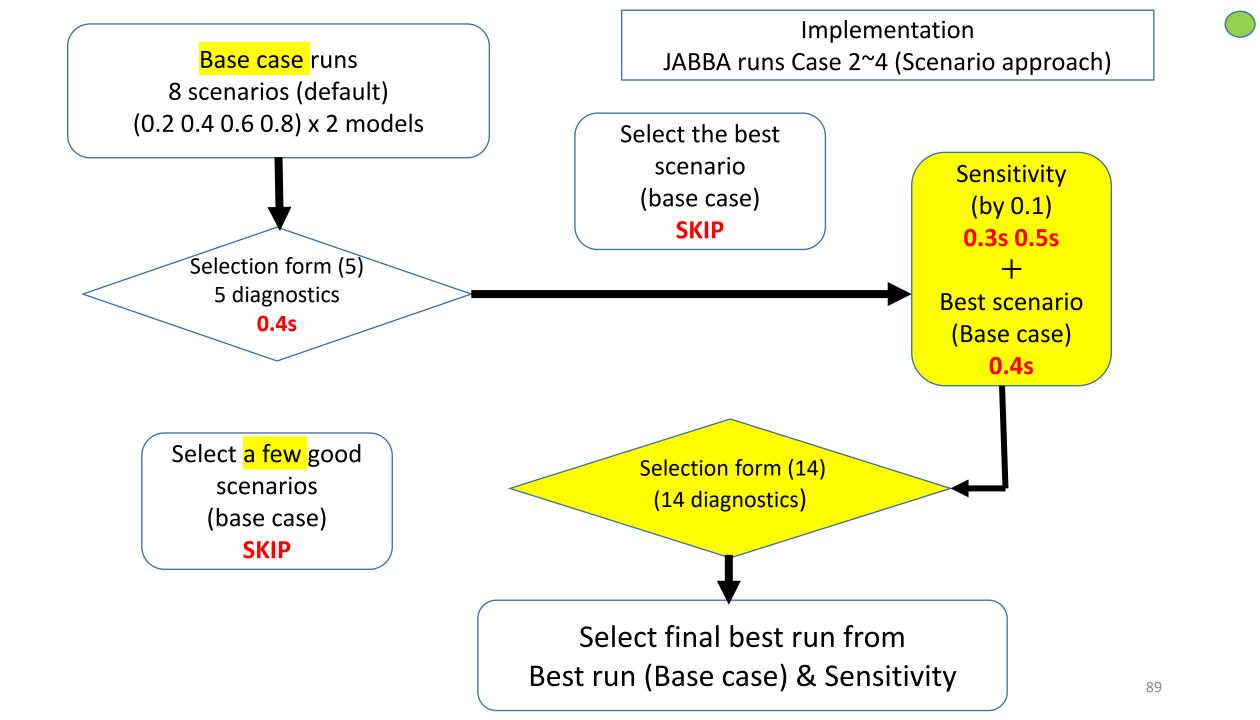
You may find a few good one in the 1st Strategy, 2nd or 3rd

If you cannot find 1st → move to the 2nd and 3rd Our case 2 good runs in the 3rd Strategy

	Stra	ateg	gy to	o se	arcl	h go	bod	CPU	JE f	or J	ABE	3A (4	1 flee	t) (N	1ax 8	scen	arios) (sa	amp	ole)					
	Stratomy				19	st							2r	nd							31	rd			
	Strategy			Inc	lividu	ial CF	PUE					Α	/erag	e CPl	JE			hyl	orid (indivi	idual	and/	<mark>or av</mark>	ve) CF	PUE
	series #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Scenario	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8
	Model	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f
	f1(CPUE1)			Inc	lividu	ial CF	PUE					۸.	.orog		15					Inc	lividu	ial CF	PUE		
fleet	f4(CPUE4)			Inc	lividu	ial CF	PUE					A	erag	e CPl	JE						(not i	used))		
neet	f3(CPUE3)			Inc	lividu	ial CF	PUE					۸.	u or o a	e CPl	16					۸.	/erag		16		
	f4(CPUE4)			Inc	lividu	ial CF	PUE						rerag	ecru						A	/erag		JE		
	(1) Kobe plot															 									
	(2) CPUE																								
5	(3) Retro					1																			
diagnostics	()4) Convergence						run				١		ton	here	<u>د</u>										
ulagilostics	(5) Retro&Hind				go	to t	he 2	na				ve s	ιορ	nere	-										
	Table				St	rate	gy																		
	Results																								
	Note																								

Only one best runs is found (0.4s) at the 3rd Strategy (hybrid) (long process)

	Stra	ateg	gy to	o se	arch	n gc	od	CPl	JE f	or JA	ABBA	A (4 fle	eet) (N	Max 8	scenar	ios) (sam	ple)	(ba	se ca	ase)				
	Charterer				19	st							2r	nd							3	rd			
	Strategy			Inc	lividu	ial CP	UE					A	verag	e CPU	E				hybric	<mark>d (indi</mark>	vidual	and/c	or ave) CPUE	
	series #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Scenario	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8
	Model	s	f	s	f	S	f	s	f	S	f	S	f	s	f	S	f	S	f	S	f	S	f	S	f
	run ID									AV1- s0.2	AV2- f0.2	AV3- s0.4	AV4- f0.4	AV5- s0.6	AV6- f0.6	AV7- s0.8	AV8- f0.8			HY3- s0.4			HY6- f0.6	HY7- s0.8	HY8- f0.8
	f1(CPUE1)			Inc	lividu	ial CP	UE		<u> </u>			/	woran	e CPU	Г					In	dividu	ial CPL	JE		
fleet	f4(CPUE4)			Inc	lividu	ial CP	UE					-	verag	e cru	L						(not	used)			
neet	f3(CPUE3)			Inc	lividu	ial CP	UE					^	Werzo	e CPU	F					,	verag	e CPU	F		
	f4(CPUE4)			Inc	lividu	ial CP	UE		_				verag	e cru	L						verag		L		
	(1) Kobe plot	ok	ok	ok	ok	ok	ng	ng	ng	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ng	ng	ng	ng	ok
	(2) CPUE	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
5	(3) Retro	ng	ng	ok	ng	ng	na	na	na	ng	na	ng	ok	ng	ng	na	na	ng	ok	ok	ok	na	na	na	ok
diagnostics	(4) Convergence	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng
anagriostics	(5) Retro&Hind Table	ok	ok	ng	ok	na	na	na	na	na	na	ok	ok	ok	na	na	na	ok	ng	ok	ok	na	na	na	ok
	Results	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ok	ng	ng	ng	ng	ng

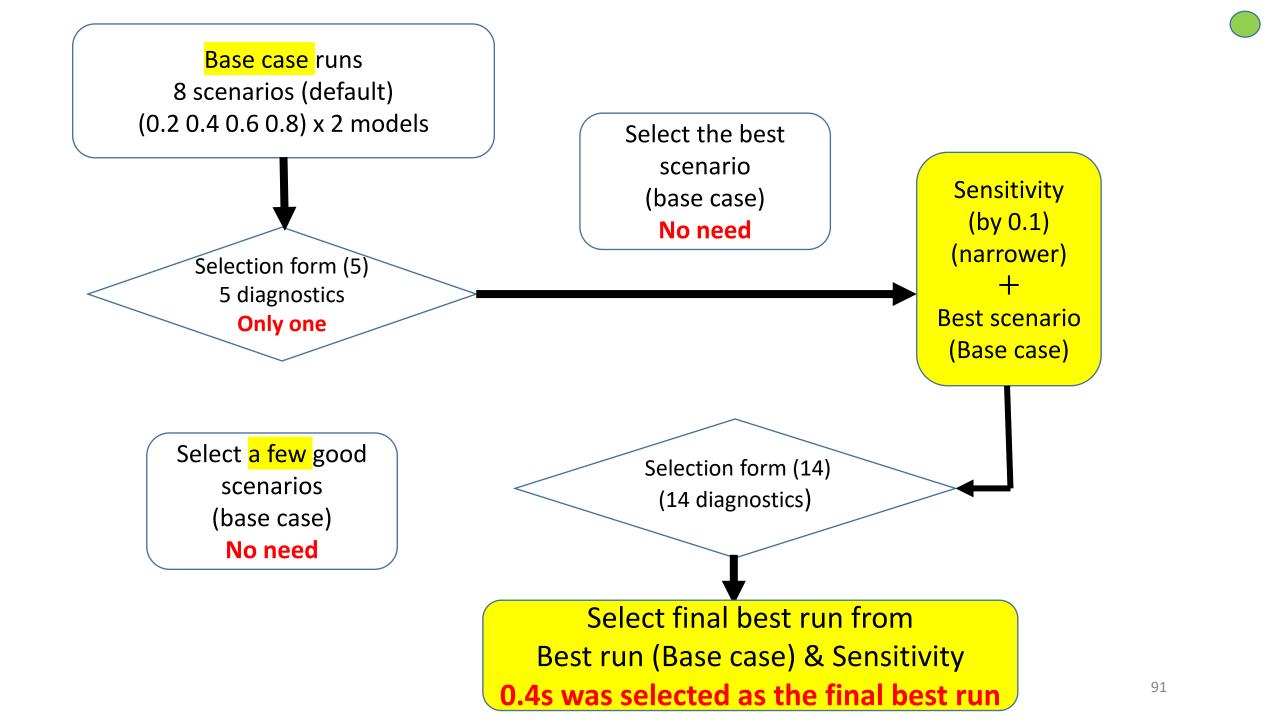

What is the next process after you get one good run (BASE CASE)→ sensitivity What is sensitivity?

We know the results (base case) But we check Depletion wider level by 0.2

We need to check result finer level by 0.1
0.1, 0.3, 0.5, 0.7
To inspect if we can find better results
→ Sensitivity (analyses)

For our case 0.4s the best run (base case)

Then we will inspect by 0.1 Before & after 0.4s 0.3s & 0.5s as sensitivity

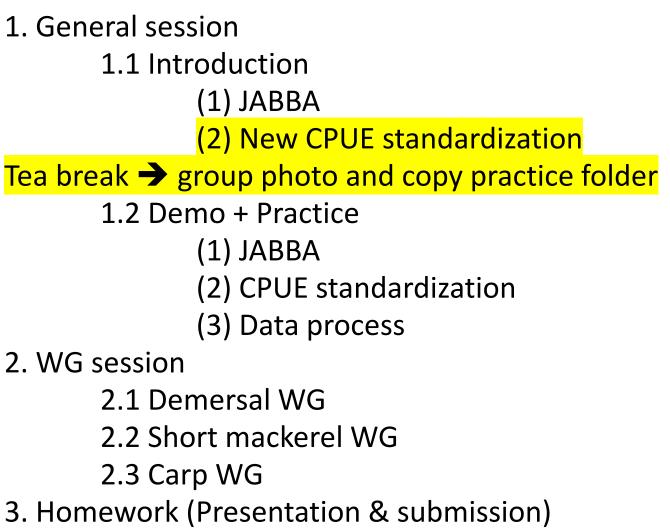


0.4s (best base case) → Selection form (14) → sensitivity 0.3s & 0.5s with 0.4s

				•					•		-					1
	(Use "S	ummar	ry of re	esults &					un using 14 ample : Inc	•		or details,	see Manual)			
		1. Co	onverg	gence (N	ICMC)			2. Mode	l Fit		3. Retro	spective				
	Evaluation	Hei	delberge	er & Welch	p test	2.1 CPUE	residuals	2.2 RMSE	2.3 Posterio Check		anal	yses	4. Hind	lcast anal	yses	
Please see	Methods	(largei	eke.p r value :ter)		del.p Ilue better)	95% CI	l band	RMSE	Average p values (compute yourself)	Visual inspection	Mohan's ρ (-0.15~2.0)	Visual inspection	MASE (# of yellow: non significant=no predicted skill) (for B & F)	MASE (Average value)	Visual inspection	We will
Manual for details on diagnostics.	Criteria	к	r	к	r	Red band Auto- correlation? No is better	total # of outliers less # is better	Less % better fit	Use the 5th sheet to compute. Closer to 0.5 is better	Ball shapes located in center are better	# of yellow markers (B & F ratio) less better	All trends should be similar patterns.	Less # better	should be <1 & smaller better	# OBS points beyond the 95% CI band	practice later
	Output #		4	# 20		# :	13	# 10	# 1	2	# 42	# 40	# 43	3	# 41	
	(page#)		((p.3)		(p.	.3)	(p.3)	(p.	4)	(p.3)	(p.3)	(p.4	.)	(p.4)	
	diagnostics #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	Refer to sheet # how to do		ļ	-	1	1	1	1	(4	.)	(5)		(6)	1		
/	8cenario #8 0.3 (Schaefer AVE)	0.94	0.16	0.44	0.58	NO	0	90.9%	0.467	NA	NA	NG	NA	NA	NA	
Users can adjust # of scenarios to compare	Scenario #8 0.4 (Schaefer AVE)	0.25	0.52	0.78	0.44	NO	0	93.2%	0.459	better	2	ок	0	0.56	1	
compare	Scenario #8 0.5 (Schaefer AVE)	0.16	0.14	0.08	0.72	NO	0	95.7%	0.479	better	NA	NA	NA	NA	NA	
	Best scenario?	#0.3	#0.4	#0.4	#0.5	same	same	#0.3	#0.5	#0.4 & #0.5	#0.4	#0.4	#0.4	#0.4	#0.4	
	(1) 8 for #0.4, 1 for #3, 2 for #0.5 and 2 for same. Thus #0.4 is the best.															
Comments &																1

Comments & (2) In addition, no retrospective analyses nor hindcasting are available for #0.3 and #0.5. decision

> (3) Thus #0.4 is selected as the best scenario.


Any questions & Comments so far to here?

มีคำถามหรือความคิดเห็นใดๆ จนถึงตอนนี้บ้างไหม?

Later JABBA practice Selection form (5) & (14)

Now we go to CPUE standardization see next

4. Sum-up session

4.1 Review, Summary & Recommendation

4.2 Future plan

What is new?

Before only 3 Covariates \rightarrow year, season and area

New **→** 7 Covariates **→** 4 more

For example, mesh size, # of gillnet,

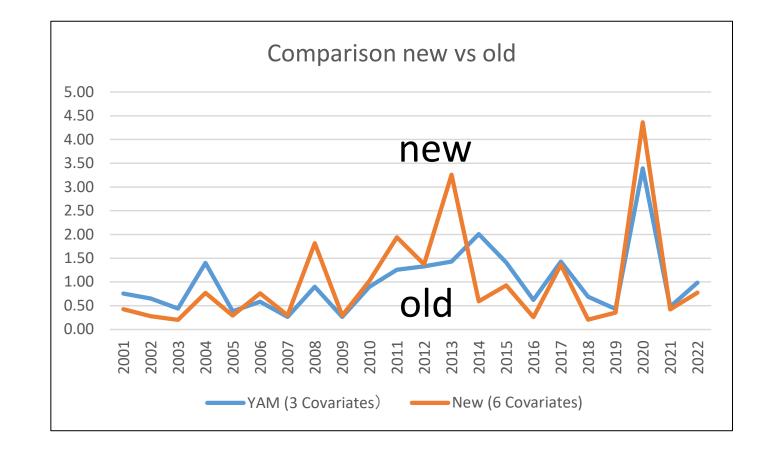
ENV (depth, SST, chlorophyl concentration, etc.)

Categorical data (Boat class), gear materials, size etc.

More practical & useful

7 Covariates (before 3)

		3 core		(1 cate		dition + 3 continu	ious)	Nominal CPUE
	А	В	С	D	E	F	G	H Dependent
1		Indep	pendent	ariable (7 Co	ovariates)			(Response) variable
2		Core			Ор	tional		Core
3	1	2	3	4	5	6	7	8
4	Integer	Catego	rical data			Continue	ous data	
5				Exam	ole			
6	Year (1950~2022)	Season (Month & Quarter)	Fishing area (A~D)	Boat class (S, M, L)	Mesh size (inch)	chlorophyl concentration (Chl)	Depth (m)	Nominal CPUE (Kg/set)
7 8 9				Dat	а			



Why

- Normally 3 enough (developing countries)
- But recently Sri Lanka
- → depth, mesh size, chlorophyl concentration (Chl) Thailand
- Demersal survey (Thai) used 2 extra Covariate depth & boat type (steel & wood)

→ Useful to get more accurate abundance index

Comparisons between **old model(YQM)** vs **new model (7 Covariate)**

Example

	A	В	С	D	E	F	G	Н
1			I	Independent varia	able			Dependent variable
2		Core da	ita		Optional			Core data
3	Integer	Categ	gorical data	categorical data		Continuo	us data	
4	1	2	3	4	5	6	7	8
5	Year	Season (Quarter)	Area	Boat class (S, M, L)	Mesh_Size (inch)	Chl (ml/L)	depth (m)	CPUE (kg/set)
6	2016	1	Negombo	S	0.8	1.22	91	1.5385
7	2017	2	Negombo	М	1.1	0.42		1.0702
8	2017	4	Matara	М	2.1	0.21	9	0.6509
9	2017	3	Matara		0.8	0.11	34	0.9467
10	2003	1	Negombo	L	1.9	0.42	32	0.6509
11	2001	1	Negombo	L			7	0.9341
12	2003	1	Negombo	S	2	0.98	22	1.3122
13	2005	2	Kalutara	S		1.11	18	•
14	2006	4	Kalutara	М	2.1	0.23	22	

Nominal CPUE data set (INPUT)(example)

			6 Cc	ovariates			CPUE (response)	var)
	А	В	С	D	E	F	G	
1	Year	Season	District	mesh_size	Chl	depth	CPUE	
2	2011	SW	Chilaw	1.75	1.36	8	10	
3	2001	SW	Negombo	2.5	0.9	20	8.73	
4	2001	SW	Negombo	2.25	0.9	18	5.417	
5	2011	SW	Chilaw	1.75	1.36	8	5.333	
6	2008	SW	Chilaw	1.75	1.58	9	5	
7	2013	IM2	Chilaw	3.25	1.12	10	5	
8	2022	SW	Kalutara	2.5	3.15	13	5	
	Integer	Cate	gorical		Continuo	us		

Nominal CPUE data

1 response (dependent) variable CPUE kg/(hr*net)

6 Covariates

(1) Year : 2001~2022 (23 years)

an-Feb & Nov ~ Dec Var ~ April Vay ~Oct	Thai NE (NE monsoon) IM (Inter Monsoon) SW (SW monsoon)
	Vlar ~ April

(3) Area 3 landing sites (Chilaw, Negombo, Kalutara)

(4) Mesh_size

(5) Chl chlorophyl concentration (Chl)

(6) Depth

2 GLM model for CPUE standardization (same as before)

0 catch rate (%)	Model	Short name
0% \sim 30%	Log normal GLM	Log normal model
30% \sim	Zero (0) inflated Delta 2 steps log normal GLM	Delta model

Formula of 2 models [A] & [C]

[A] Log normal GLM

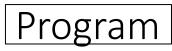
log (CPUE + Constant) =Intercept + Year + Season + Area + Season*Area

Categorical data + Other covariates (Max 3) + Error ~ N(0, σ^2)

See next page about Constant (0.1*average of nominal CPUE)

[C] Delta 2 steps log normal model

1st step (delta model using logit model)


E [log{q/(1-q)}] = intercept + Year + Season + Area + Season*Area

Categorical data + Other covariates (Max), where $q(ratio of zero-CPUE)^{\sim}Binominal(\theta)$

2nd step (log normal model for non 0 CPUE)

log(CPUE)=Intercept + Year + Season + Area + Season*Area

Categorical data + Other covariates (Max 3) + Error ~ N(0, σ^2)

- 1. General session
 - 1.1 Introduction
 - (1) JABBA
 - (2) New CPUE standardization
 - 1.2 Demo + Practice
 - <mark>(1) JABBA</mark>
 - (2) CPUE standardization
 - (3) Data process
- 2. WG session
 - 2.1 Demersal WG
 - 2.2 Short mackerel WG
 - 2.3 Carp WG
- 3. Homework (Presentation & submission)
- 4. Sum-up session
 - 4.1 Review, Summary & Recommendation
 - 4.2 Future plan

Let's work a simple case study together

Indian Mackerel (Sri Lanka)

One CPUE

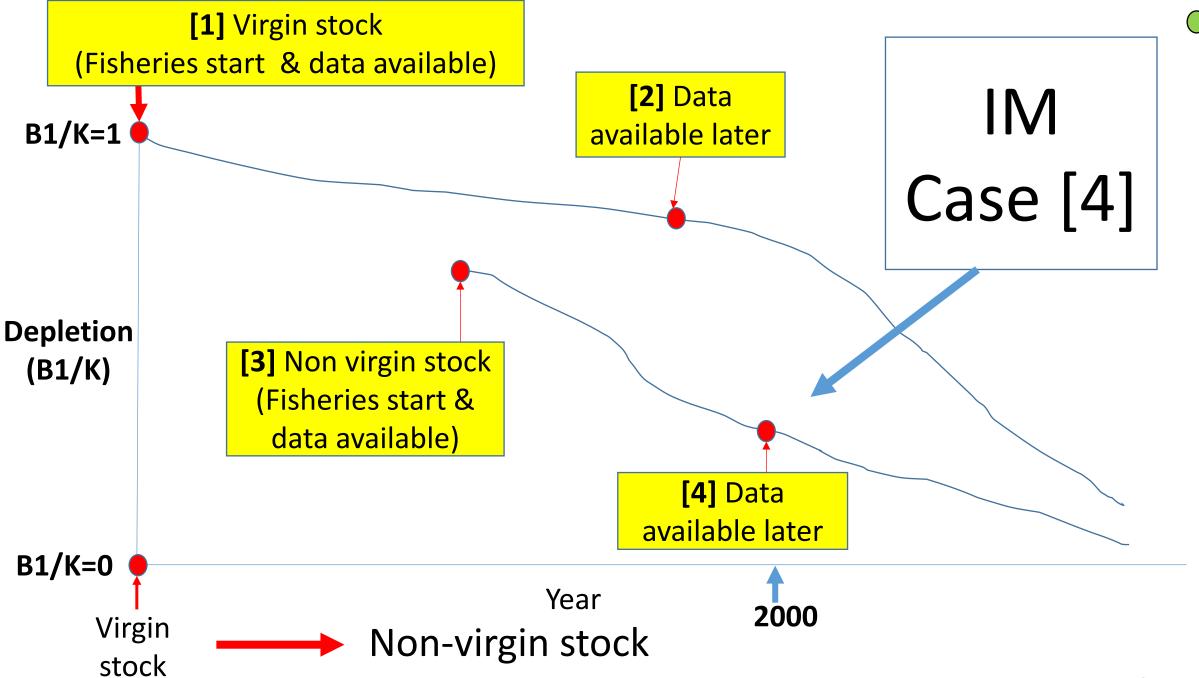
To run JABBA

we need folder & files

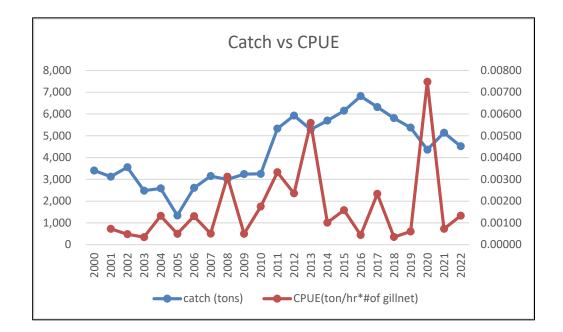
	···· JABBA > (1) Indian Mackerel (I	M) (Sri Lanka) > Bas	e case > 0.2 >	Schaefer >
	▲ ① ① ☆べ替え ~	☰ 表示 Ў •••		
	〕 名前	更新日時	種類	サイズ
	Schaefer(Results) RESULTS	2025/05/16 9:26	ファイル フォルダー	
/	source	2025/05/03 13:02	ファイル フォルダー	
R		2025/04/27 17:27	Microsoft Excel CSV	1 KB
code		2025/04/27 18:46	Microsoft Excel CSV	1 KB
		2025/04/27 18:46	Microsoft Excel CSV	1 KB
	JABBA_interface.R	2024/09/18 15:45	R ファイル	5 KB

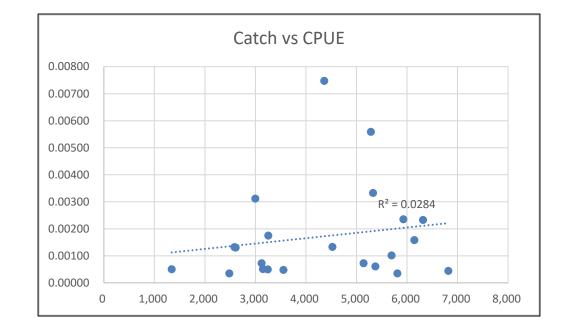
data

	Catch									
	А	В								
1	Year	Catch								
2	2000	3404								
3	2001	3123								
4	2002	3554								
5	2003	2482								
6	2004	2585								
7	2005	1344								
8	2006	2609								
9	2007	3149								
10	2008	2998								
11	2009	3243								
12	2010	3254								
13	2011	5327								
14	2012	5929								
15	2013	5286								
16	2014	5694								
17	2015	6145								
18	2016	6817								
19	2017	6317								
20	2018	58 0 9								
21	2019	5375								
22	2020	4361								
23	2021	5140								
24	2022	4522								


Stai	ndardize	d CPUE
	А	В
1	year	f1
2	2000 (
3	2001	0.42
4	2002	0.28
5	2003	0.2
6	2004	0.77
7	2005	0.29
8	2006	0.76
9	2007	0.3
10	2008	1.82
11	2009	0.29
12	2010	1.02
13	2011	1.94
14	2012	1.37
15	2013	3.26
16	2014	0.59
17	2015	0.93
18	2016	0.26
19	2017	1.36
20	2018	0.21
21	2019	0.36
22	2020	4.36
23	2021	0.42
24	2022	0.78
0.5		

CV


_		
	А	В
1	year	f1
2	2000 (
3	2001	0.2
4	2002	0.2
5	2003	0.2
6	2004	0.2
7	2005	0.2
8	2006	0.2
9	2007	0.2
LO	2008	0.2
1	2009	0.2
12	2010	0.2
13	2011	0.2
L 4	2012	0.2
L5	2013	0.2
16	2014	0.2
L 7	2015	0.2
18	2016	0.2
L9	2017	0.2
20	2018	0.2
21	2019	0.2
22	2020	0.2
23	2021	0.2
24	2022	0.2


109

 \bigcirc

IM data (catch and standardized CPUE)

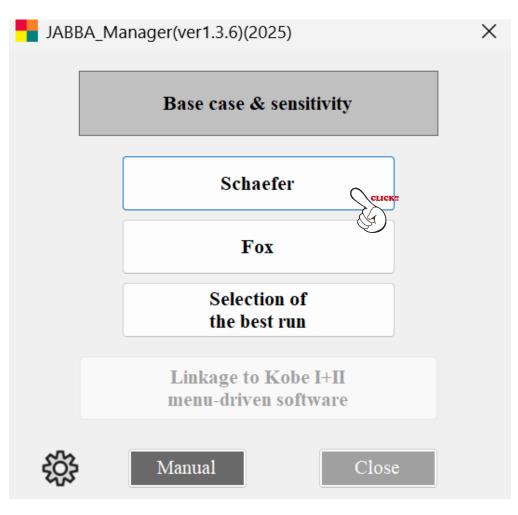
Catch gradually increasing CPUE up & down Stable

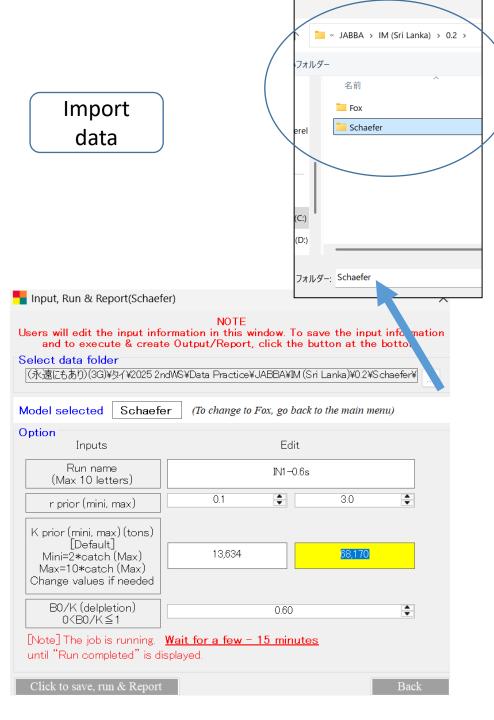
Positive r2 NG but 3% OK But this is the only CPUE, we will use.

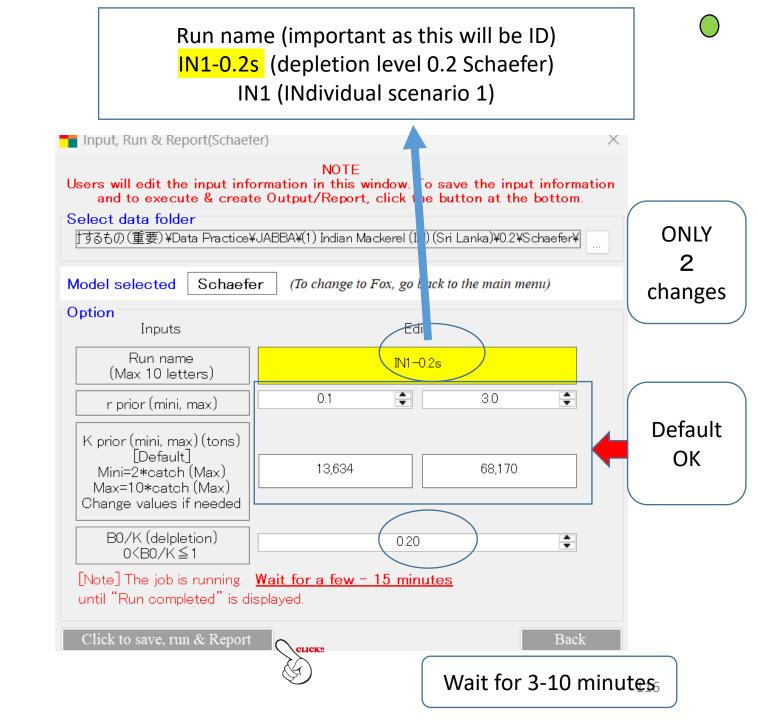
We will use Selection form (5)

> ··· Data Practice >	JABBA > (1) Indian Mackerel (IM)	(Sri Lanka) > Bas	e case >
	↑↓ 並べ替え ~	☰ 表示 ~ •••		
□ 名前		更新日時	種類	サイズ
0.2		2025/05/04 13:58	ファイル フォルダー	
0.4		2025/05/03 14:27	ファイル フォルダー	
0.6		2025/05/03 14:27	ファイル フォルダー	
0.8		2025/05/03 14:28	ファイル フォルダー	
Selection form (5)		2025/05/16 9:18	Microsoft Excel ワー	13

Base case set up for evaluation (Available in your data practice folder)


	Strategy to search good CPUE for JABBA (1 fleet) (Max 8 scenarios) (sample)										
	Chuckery				19	st					
	Strategy				Individu	al CPUE					
	series #	1	2	3	4	5	6	7	8		
	Scenario	1	2	3	4	5	6	7	8		
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8		
	Model	S	f	S	f	S	f	S	f		
	Run ID	IN1-0.2s	IN2-0.2f	IN3-0.4s	IN4-0.4s	IN56s	IN6-0.6f	IN7-0.8s	IN8-0.8f		
fleet	f1(CPUE1)				INdividu	al CPUE					
	(1) Kobe plot										
	(2) CPUE										
5	(3) Retro										
_	(4) Convergence										
diagnostics	(5) Retro&Hind										
	Table										
	Results										
	Note										


Now Practice


Let's start from 0.2s (Schaefer)

nput, Run & Report(Schaefer)		
and to execute & creat Select data folder	NOTE ormation in this window. To save the ce Output/Report, click the button at #JABBA¥(1) Indian Mackerel (IM) (Sri Lanka)¥0.2¥Sc	formation ttom.
Model selected Schaefe	er (To change to Fox, go back to the main mer	nu)
Option JABBA_Manage	er(ver1.3.6)(2025)	×
Rur (Max 1 r prior (K prior (mir [De Mini=2*c Max=10*	port files is created & saved in the result folder.	
Change va		
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>0.20</td><td></td></b0>	0.20	
[Note] The job is running. until "Run completed" is di	<mark>Wait for a few − 15 minutes</mark> isplayed.	
Click to save, run & Report		Back

Find your report (deep)

··· 0.2 > Schaef	er > Schaefer(Results) > IN1-0.2	s > Report
	↑↓ 並べ替え ~ 🛛 三 表示 ~ 🔸 •••	
〕 名前	更新日時	種類
Log	2025/05/16 9:26	テキスト ドキュメ
Report_IN1-0.2s	2025/05/16 9:26	Microsoft Wo

Run name important

Report_IN1-0.2s (Schaefer)

Contents

Output

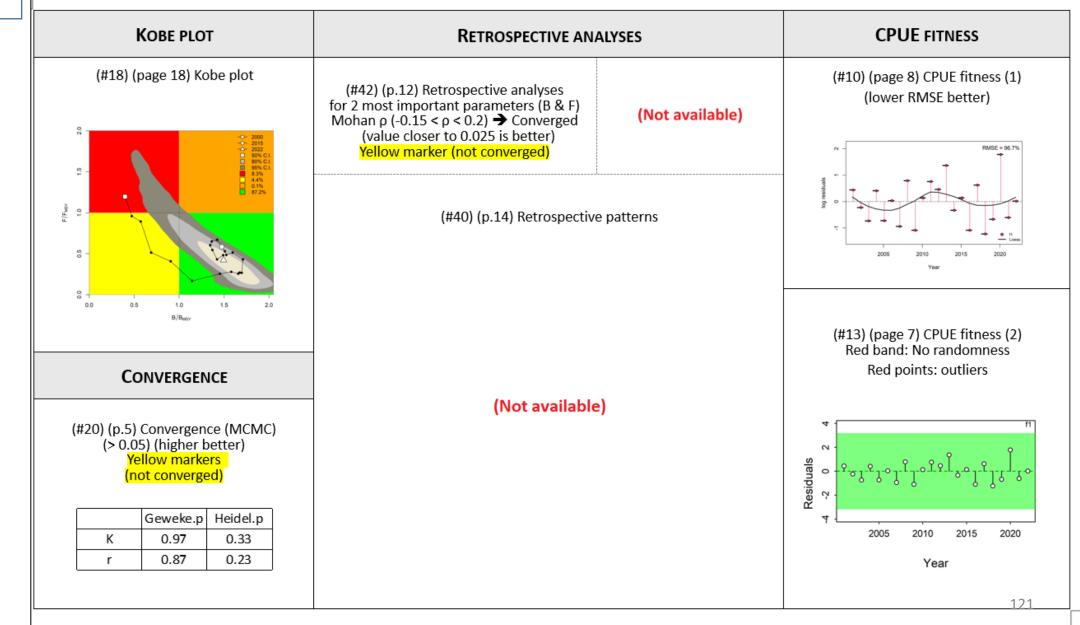
Summary of results & diagnoses

1. Convergence

Heidelberger and Welch Statistical test (MCMC)

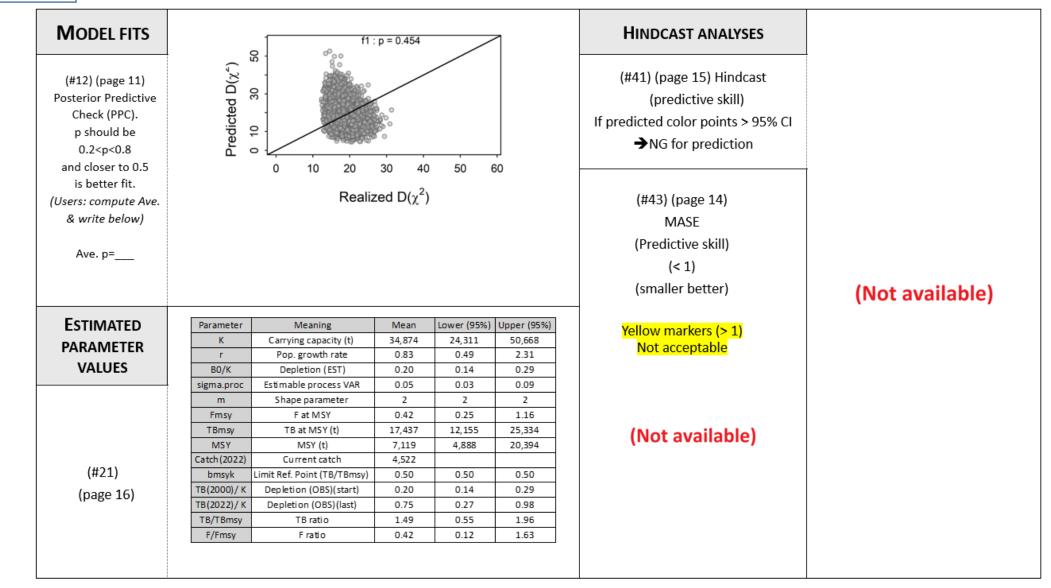
- 2. Model fit
 - 2.1 CPUE Residuals (Randomness & outliers)
 - 2.2 RMSE (Root Mean Square Error)
 - 2.3 Prior to Posterior Median/Variance Ratio (PPMR/PPVR)
 - 2.4 Posterior Predictive Check (PPC)
- 3. Retrospective analyses (model mis-specification)
- 4. Hindcast analyses (prediction power)
- 5. Estimated parameter values
- 6. Visual inspection
- 7. Next step (Selection of Schaefer or Fox)

Front page


You need to see Page 3-4 (5 diagnostics to evaluate results)

Note: Sometimes there are blank figures and/or tables due to space limitations. In such a case, please copy and paste from the original output files located one before this Report folder). If there are no outputs, please leave it empty.

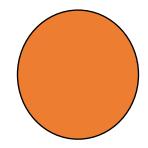
Page 3


IN1-0.2s(Schaefer)

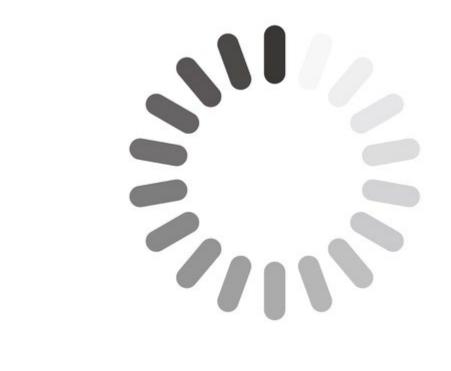
Summary of results & diagnoses (1/2) (Key diagnoses)

Page 4

Summary of results & diagnoses (2/2)

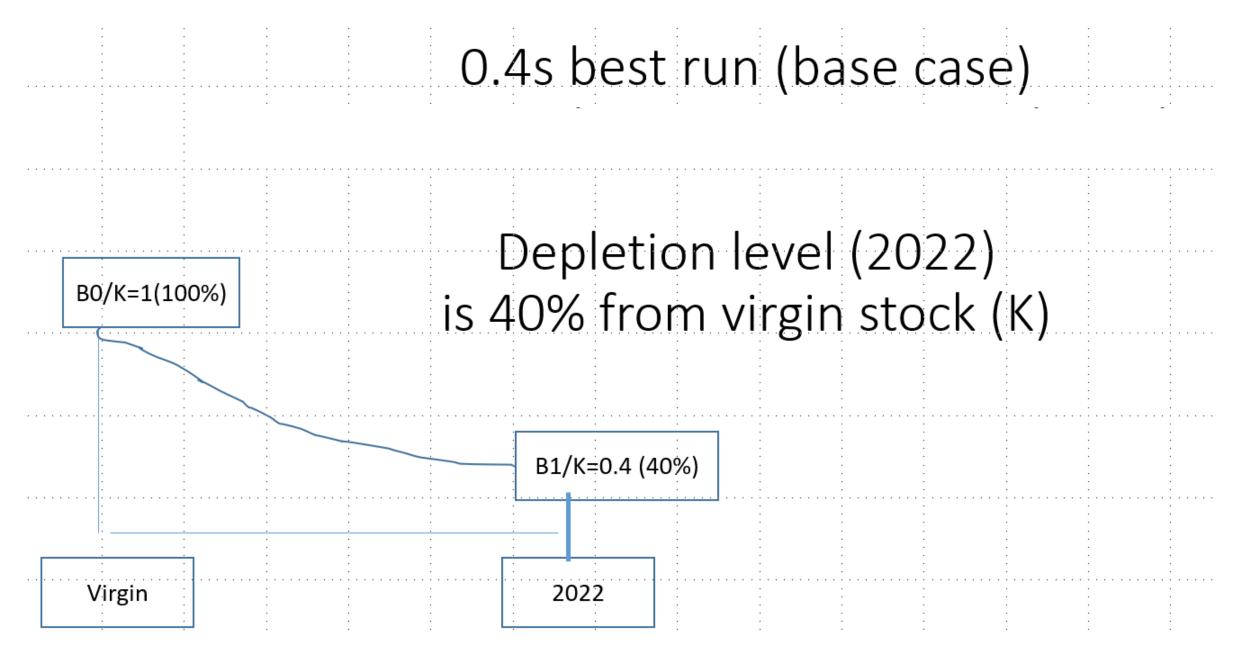

Evaluate yourself. Below is correct answer

	Strategy to search good CPUE for JABBA (1 fleet) (Max 8 scenarios) (sample)										
	Ctrata au	Strategy/ 1st									
	Strategy				Individu	ial CPUE					
	series #	1	2	3	4	5	6	7	8		
	Scenario	1	2	3	4	5	6	7	8		
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8		
	Model	S	f	S	f	S	f	S	f		
fleet	f1(CPUE1)	INdividual CPUE									
	(1) Kobe plot	ok									
	(2) CPUE	ok									
5	(3) Retro	na									
	(4) Convergence	ok									
diagnostics	(5) Retro&Hind Table	na									
	Results	ng									
	Note										

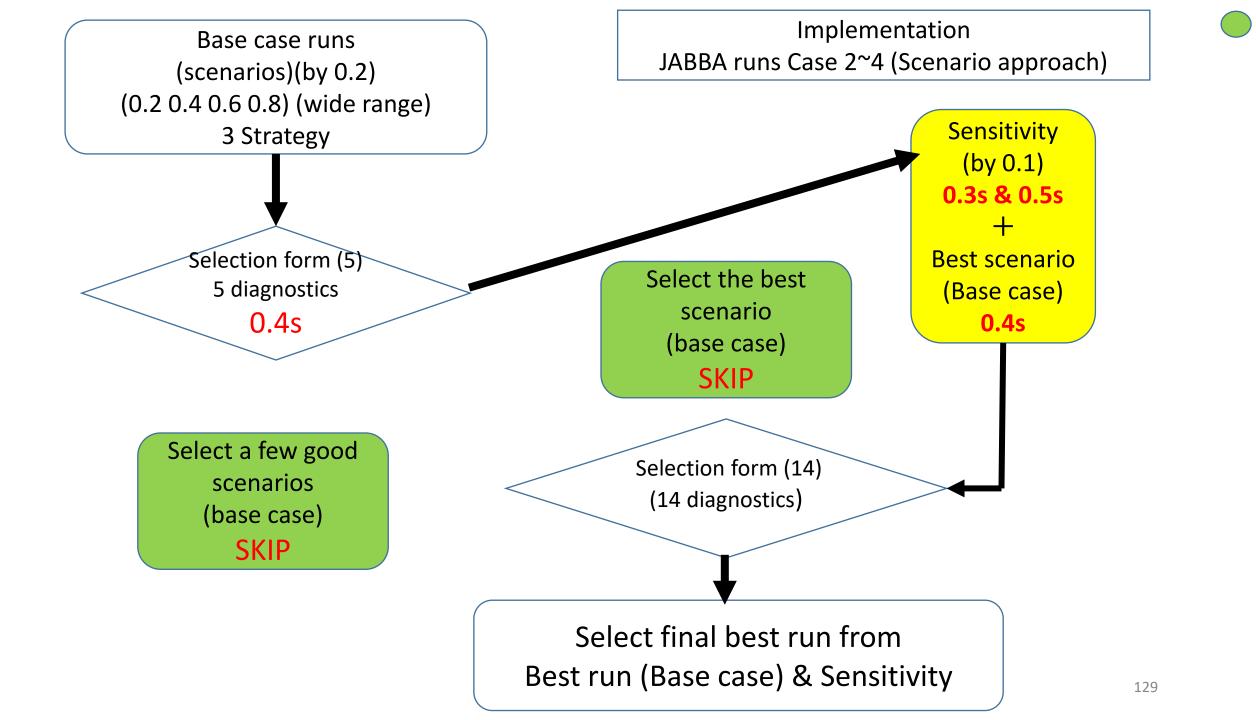

na : not available and ng :no good

If OK, Let's practice all others

	Strategy to search good CPUE for JABBA (1 fleet) (Max 8 scenarios) (sample)									
	Stratom/ 1st									
	Strategy				Individu	al CPUE				
	series #	1	2	3	4	5	6	7	8	
	Scenario	1	2	3	4	5	6	7	8	
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	
	Model	S	f	S	f	S	f	S	f	
fleet	f1(CPUE1)				INdividu	ial CPUE		•		
	(1) Kobe plot	ok								
	(2) CPUE	ok								
5	(3) Retro	na								
	(4) Convergence	ok								
diagnostics	(5) Retro&Hind Table	na								
	Results	ng								
	Note									


You are now working

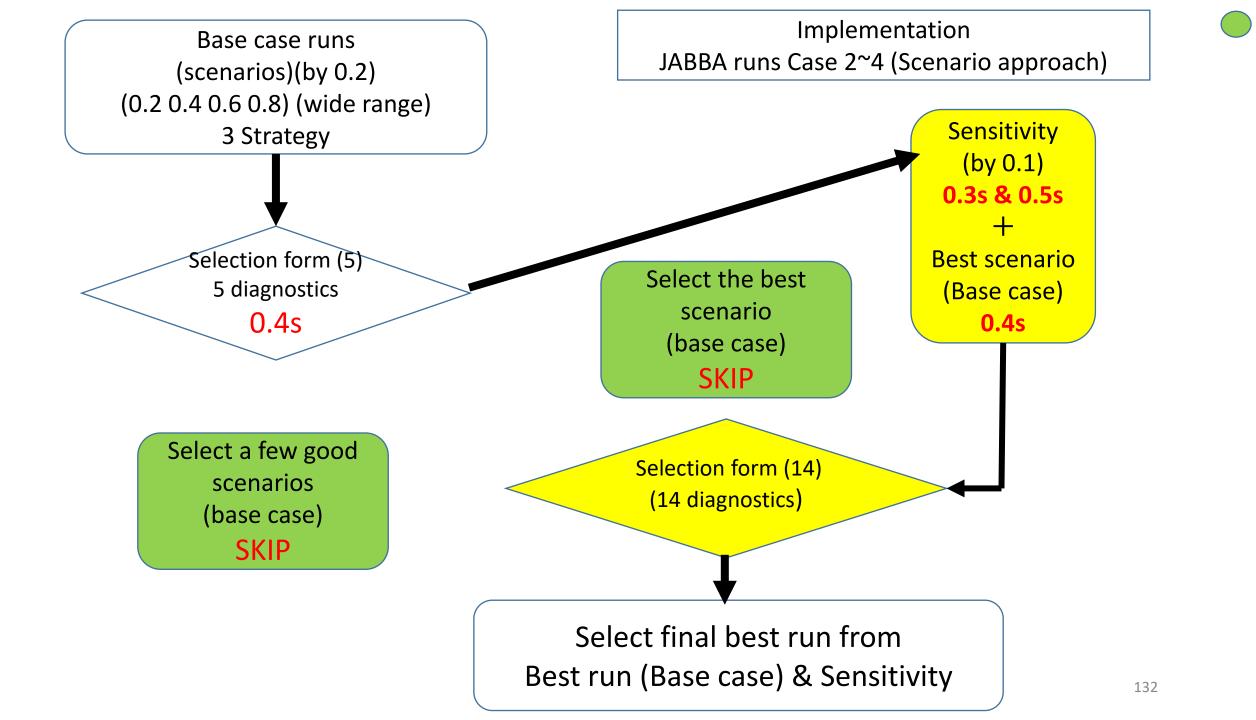
Results of the base case → 0.4s good all OK for 5 diagnostics


	series #	1	2	3	4	5	6	7	8			
Basic Information	Scenario		1									
	B0/K	0	.2	0.	.4	0	.6	0	.8			
	Model	S	f	S	f	S	f	S	f			
	f1(CPUE1)			1	fleet (ir	ndividua	l)					
	(1) Kobe plot	ok	ok	ok	ok	ok	ng	ng	ng			
	(2) CPUE	ok	ok	ok	ok	ok	ok	ok	ok			
	(3) Retro	na	ng	ok	ng	ng	na	na	na			
5 diagnostics	(4) Convergence	ok	ok	ok	ok	ok	ok	ok	ok			
	(5) Retro&Hind	2	ok	ok	ok	50	50	22	22			
	Table	na	ok	ok	ok	na	na	na	na			
	Results	ng	ng	ok	ng	ng	ng	ng	ng			

()

0.4s is good. So, what is the next?

Base case : Depletion rate by 0.2 Sensitivity by 0.1 (before & after 0.1) 0.3s and 0.5s


Prepare 0.3s & 0.5s folder & files (final run)

Run 0.3s & 0.5s

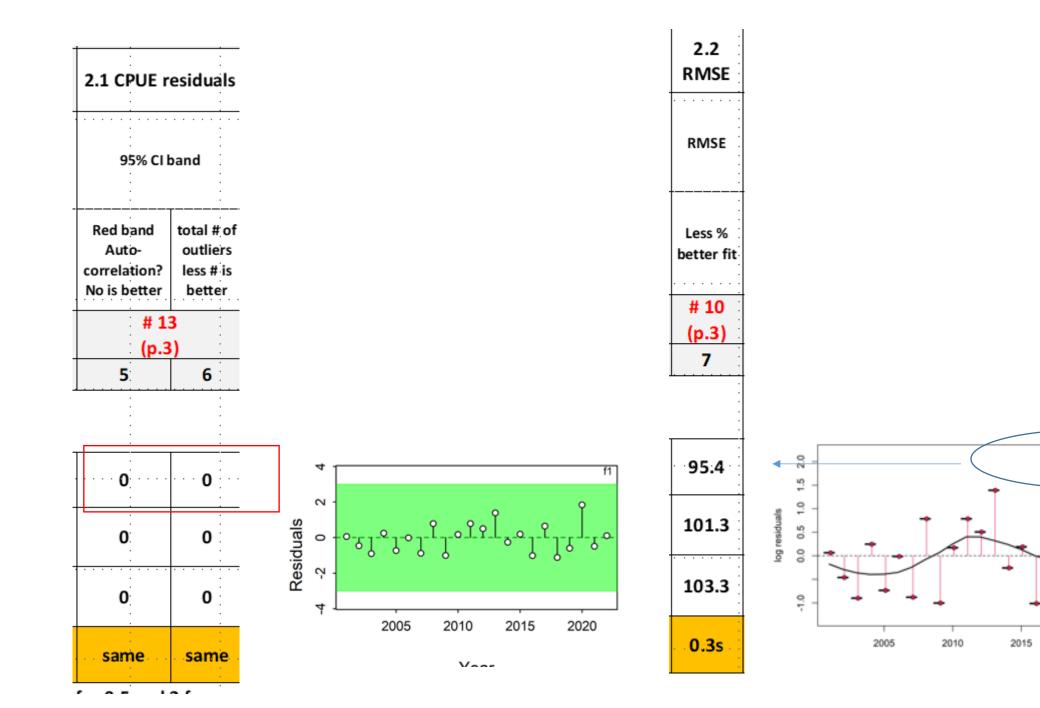
Get Report

0.4s (same)

Data Practice >	JABBA > (1) Indian Macke	erel (IM) (Sri Lanka) > final >
	↑↓ 並べ替え ~	•••
○ 名前	更新日時	種類サイズ
0.3 s	2025/05/18 2:33	ファイル フォルダー
0.4 s	2025/05/18 2:34	ファイル フォルダー
0.5 s	2025/05/18 2:33	ファイル フォルダー
Selection form (14)(final)	2025/05/18 3:10	Microsoft Excel ワー 1,133

Prepare Selection form (14)

We will work together

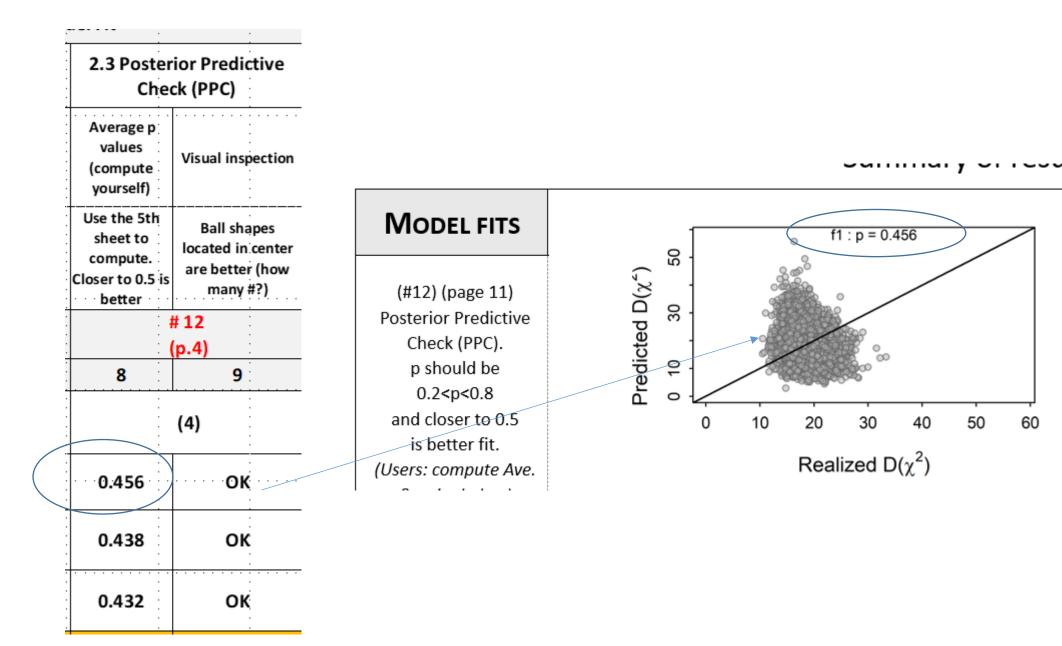

Fill out Selection form (14) Using hard copies (Report page 3~4) 0.3s+0.4s+0,5s

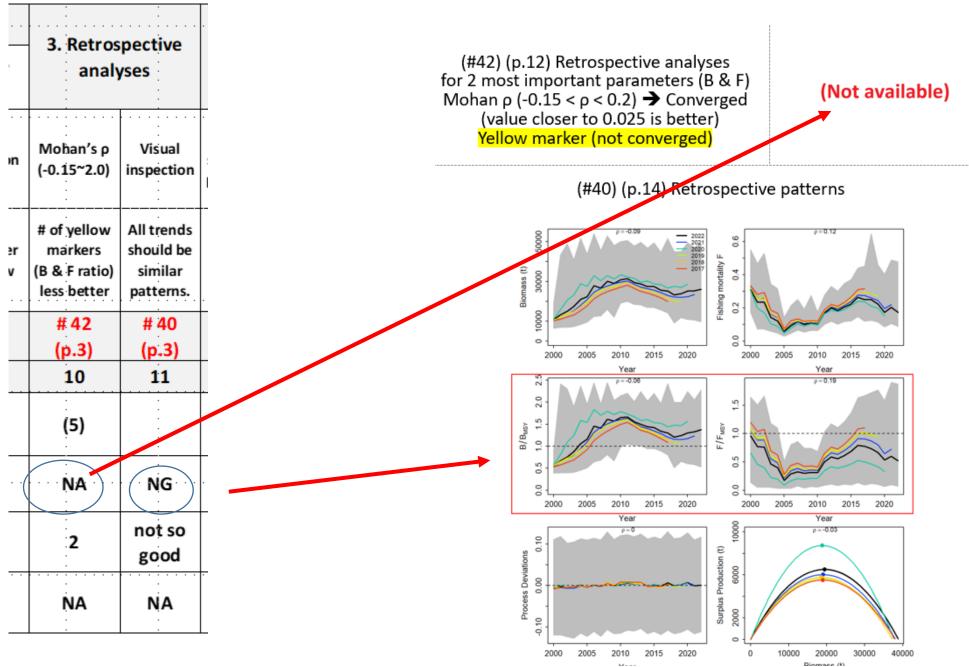
		1. Co	onverg	ence (N	ICMC)			2. Mo	del Fit		2 Dotro				
Manual for details on diagnostics.	Evaluation	Heidelberger and Welch p test			2.1 CPUE r	2.1 CPUE residuals RMSE			2.3 Posterior Predictive Check (PPC)		3. Retrospective analyses		4. Hindcast analyses		
Please see	Methods		eke.p ^r value ter)	(large	del.p r value tter)	95% CI	band	RMSE	Average p values (compute yourself)	Visual inspection	Mohan's ρ (-0.15~2.0)	Visual inspection	MASE (# of yellow: non significant=NG predicted skill) (for B & F)	MASE (Average value)	Visual inspection
Manual for details on diagnostics.	Criteria	К	r	к	r	Red band Auto- correlation? No is better	total # of outliers less # is better	Less % better fit	Use the 5th sheet to compute. Closer to 0.5 is better	Ball shapes located in center are better (how many #?)	# of yellow markers (B & F ratio) less better	All trends should be similar patterns.	Less # better	should be <1 & smaller better	# OBS points beyond the 95% CI band
	Output #		#	20		# 1	3	# 10	i	# 12	# 42	# 40	# 43		# 41
	(page#)		()	o.3)	1	(p.3	3)	(p.3)		(p.4)	(p.3)	(p.3)	(p.4)		(p.4)
	diagnostics #	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Refer to sheet # how to do								(4)	(5)			(6)		
Sensitivity	0.3s	0.05	0.69	0.07	0.44	0	0	95.4	0.456	ОК	NA	NG	NA	NA	NA
Base case	0.4s	0.84	0.18	0.17	0.33	0	0	101.3	0.438	ОК	2	not so good	0	0.53	1
Sensitivity	0.5s	0.99	0.55	0.12	0.60	0	0	103.3	0.432	ОК	NA	NA	NA	NA	NA
	Best scenario?	0.5s	0.3s	0.4s	0.5s	same	same	0.3s	0.3s	same	0.4s	0.4s	0.4s	0.4s	0.4s
_	(1)	6 best	for 0.4	ls, 4 for	[.] 0.3s, 1	for 0.5 and	3 for sam	ne. From	n this, 0.34s is	s the best/					
Comments	(2)	Actual	ly, 0.3	s & 0.5s	s don't p	orovide Retr	ospective	e & Hind	cast analyse	s. At this point,	0.4s is the	only one b	oest run.		
& decision	(3)	In cor	Iclusio	n, 0.4s i	is select	ed as the be	est run.					-			

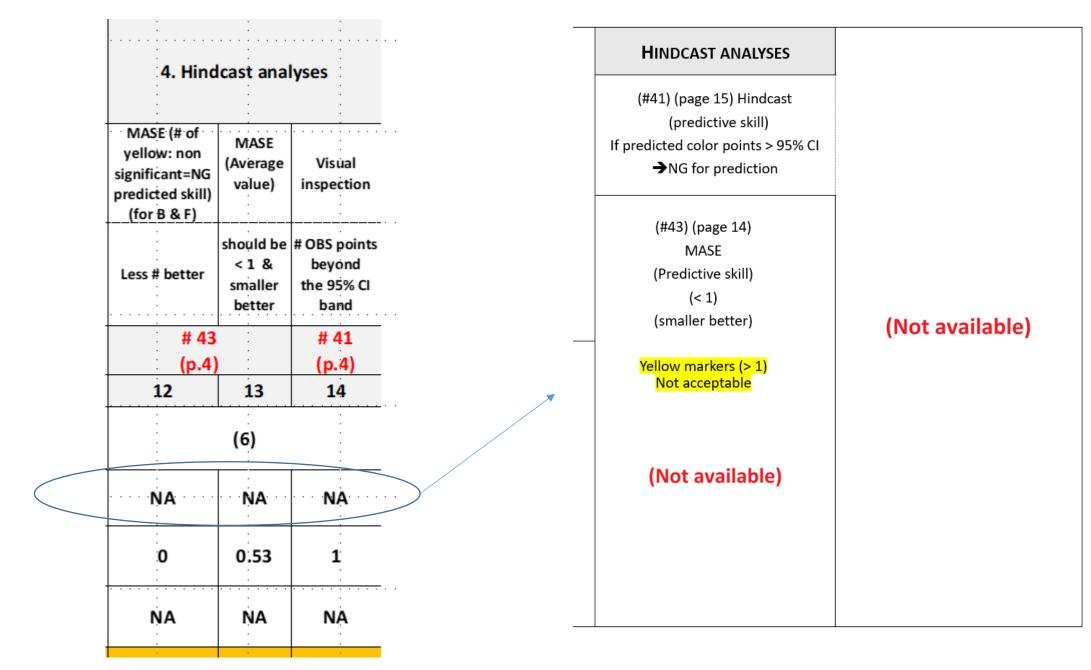
•	1. Convergence (MCMC)												
Evaluation	Heidelberger and Welch p test												
Methods	(larger	eke.p value ter)	Heidel.p (larger value better)										
Criteria	к	r	к	r									
Output # (page#)	# 20 (p.3)												
diagnostics #	1	2	3	4	T								
Refer to sheet # how to do	· · · · · · · · · · · · · · · · · · ·	-											
0.3s	0.05	0.69	0.07	0.44									
0.4s	0.84	0.18	0.17	0.33	T								
0.5s	0.99	0.55	0.12	0.60	İ								

(#20) (p.5) Convergence (MCMC) (> 0.05) (higher better) Yellow markers (not converged)

	Geweke.p	Heidel.p
К	0.05	0.07
r	0.69	0.44




136


RMSE = 95.4%

f1 Loess

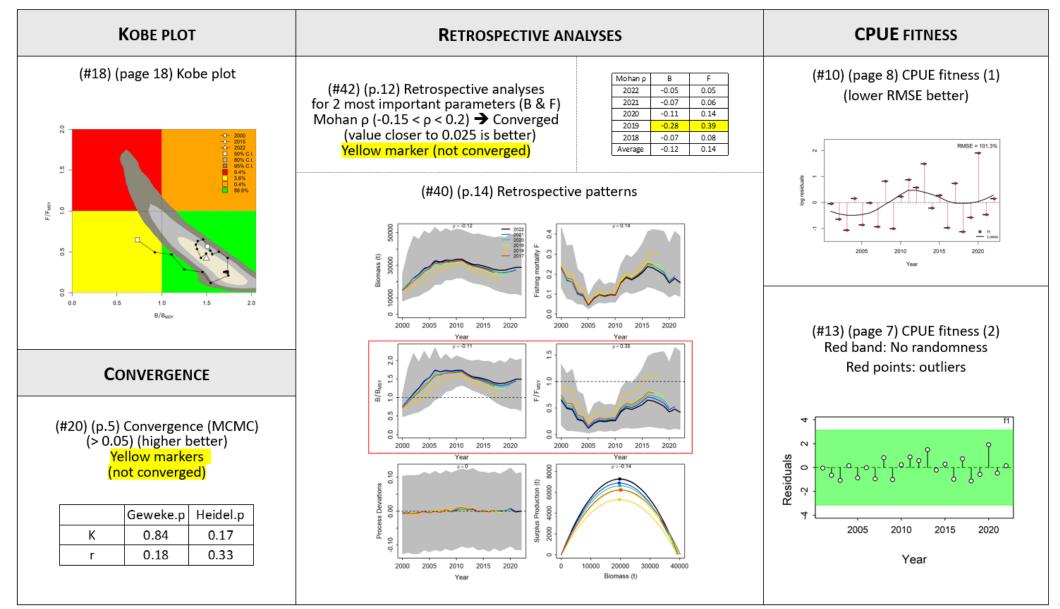
2020

The best run is 0.4s 1st Strategy (Individual CPUE)

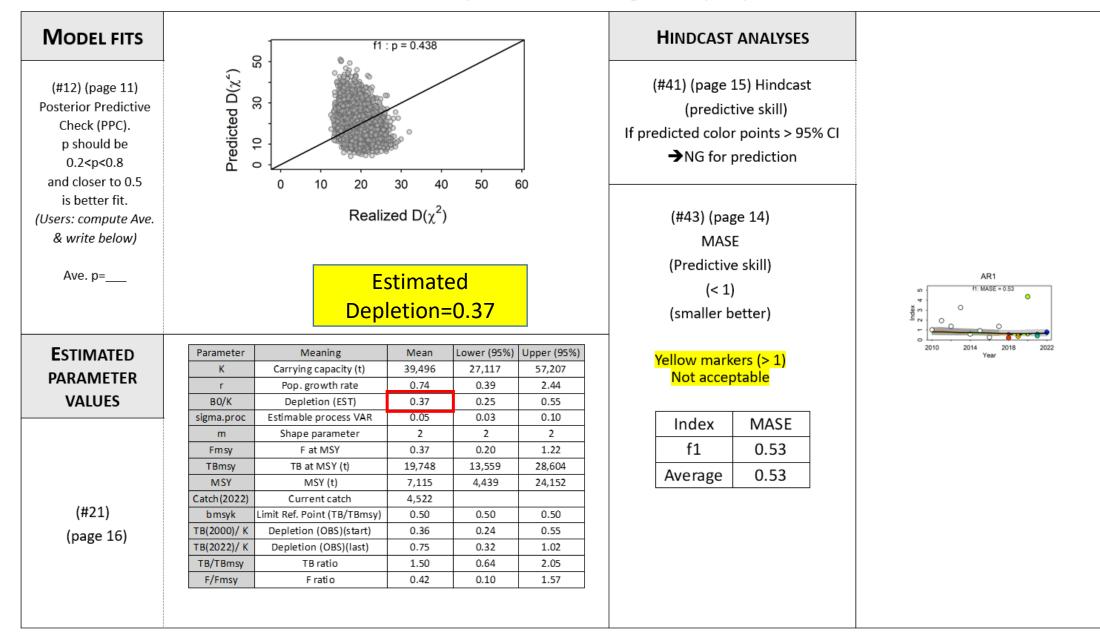
we are lucky as we could get the best run in the 1st Strategy

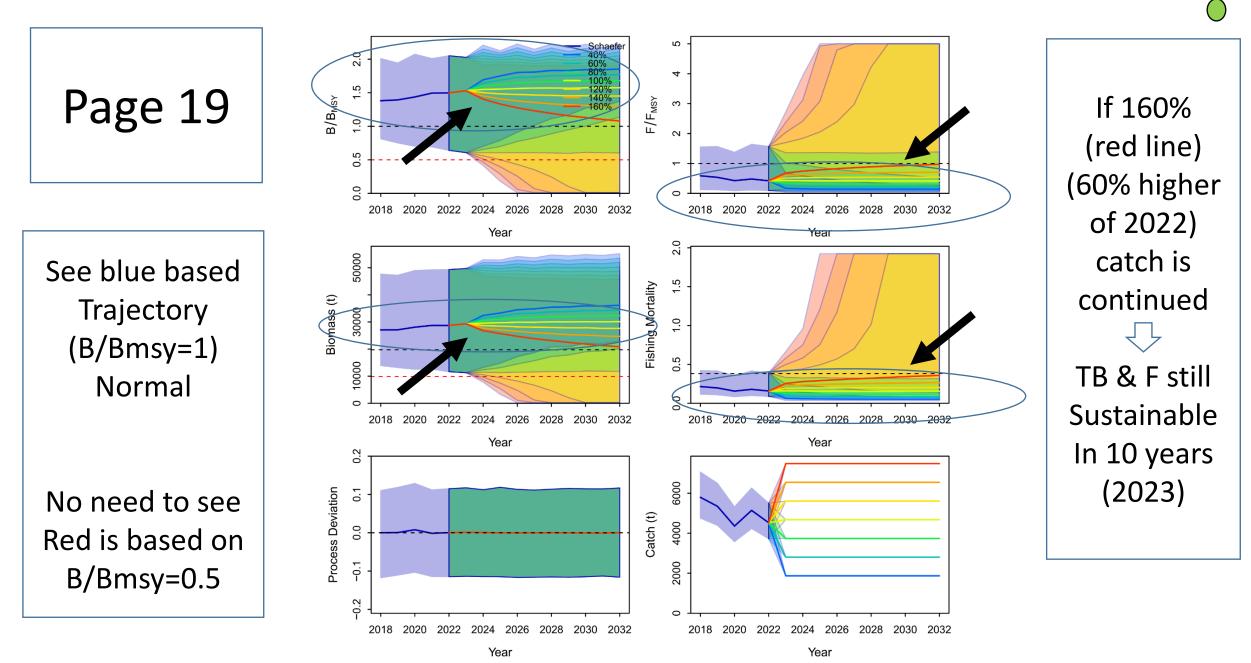
This is because CPUE good (green & no outliers)

NOT LIKE THIS


Strategy to search good CPUE for JABBA (4 fleet) (Max 8 scenarios) (sample) (base case)																									
	Stratom/ 1st									2nd								3rd							
	Strategy Individual CPUE									Average CPUE								hybrid (individual and/or ave) CPUE							
	series #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Scenario	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	B0/K (depletion)	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8
	Model	S	f	s	f	s	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f	S	f
	I run ID I	IN1-	IN2-	IN3-	IN4-	IN5-	IN6-	IN7-	IN8-	AV1-	AV2-	AV3-	AV4-	AV5-	AV6-	AV7-	AV8-	HY1-	HY2-	HY3-	HY4-	HY5-	HY6-	HY7-	HY8-
		s0.2	f0.2	s0.4	f0.4	s0.6	f0.6	s0.8	f0.8	s0.2	f0.2	s0.4	f0.4	s0.6	f0.6	s0.8	f0.8	s0.2	f0.2	s0.4	f0.4	s0.6	f0.6	s0.8	f0.8
	f1(CPUE1)	Individual CPUE							•	Average CPUE							Individual CPUE								
floot	f4(CPUE4)	Individual CPUE																		(not used)					
fleet	f3(CPUE3)	Individual CPUE								Average CPUE															
	f4(CPUE4)	Individual CPUE																	F	Average CPUE					
	(1) Kobe plot	ok	ok	ok	ok	ok	ng	ng	ng	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ng	ng	ng	ng	ok
	(2) CPUE	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok
5 diagnostics	(3) Retro	ng	ng	ok	ng	ng	na	na	na	ng	na	ng	ok	ng	ng	na	na	ng	ok	ok	ok	na	na	na	ok
	(4) Convergence	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ok	ng
	(5) Retro&Hind Table	ok	ok	ng	ok	na	na	na	na	na	na	ok	ok	ok	na	na	na	ok	ng	ok	ok	na	na	na	ok
	Results	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ok	ng	ng	ng	ng	ng

Major results


IN1-0.4s(Schaefer)


Summary of results & diagnoses (1/2) (Key diagnoses)

IN1-0.4s(Schaefer)

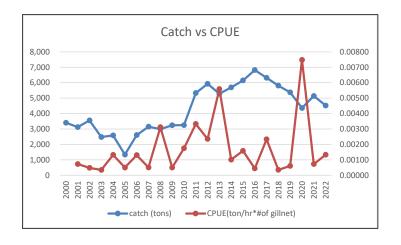
Summary of results & diagnoses (2/2)

Summary of results (JABBA stock assessment for Indian Mackerel in Sri Lanka)

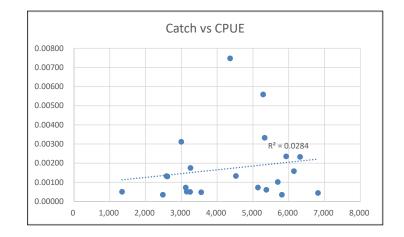
• Results

→ ALL OK (Convergence, CPUE, retrospective analyses, Hindcast analyses, Kobe plot)

 Stock status (2022) → very healthy condition Catch 4,522 tons (63% of MSY) MSY=7,115 TB/TBmsy=1.5 & F/Fmsy=0.42 (Green in Kobe plot far from MSY) • Even 60% increase of the current catch (7,235 tons), TB & F will


be sustainable in 10 years (2023).

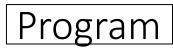
• But max 50% increase of catch (6,800 ton) will be suggested as


TAC need to consider uncertainties and precautionary approach.

If time allowed, make graphs (below) data (catch & STD_CPUE) are available in each folder.

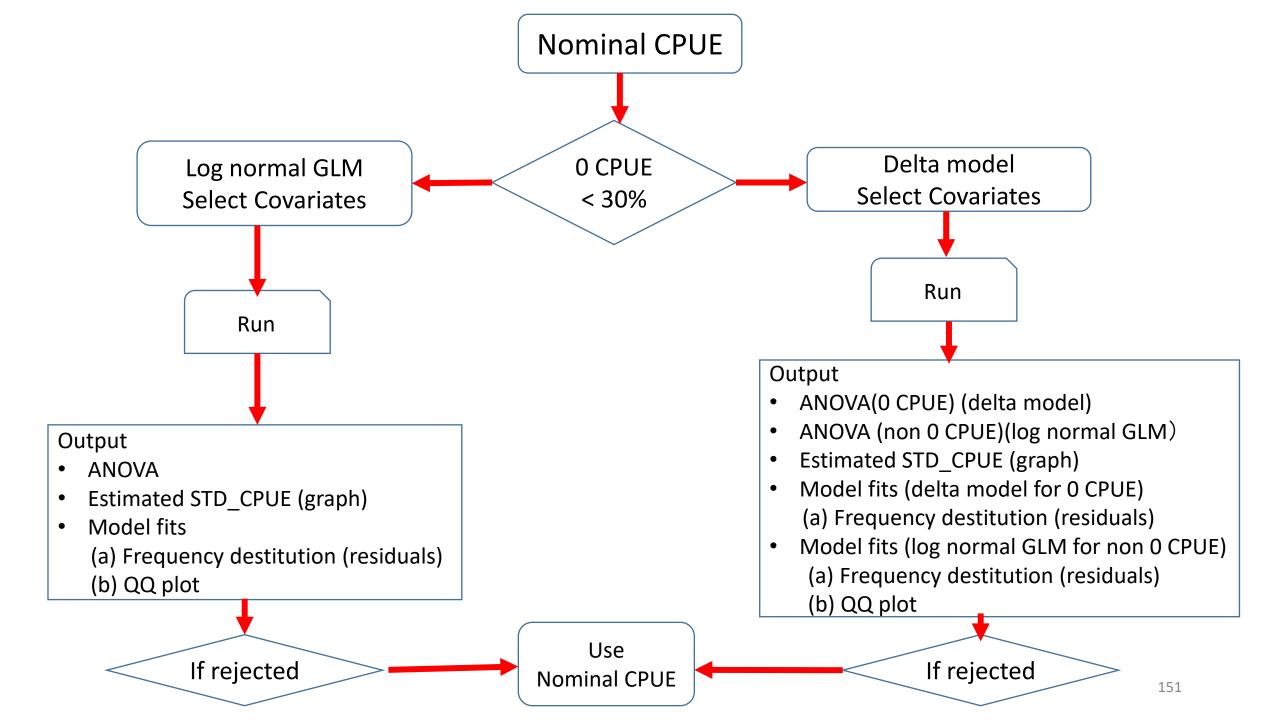
IM data (catch and standardized CPUE)

Catch gradually increasing CPUE up & down Stable



Positive r2 NG but 3% OK But this is the only CPUE, we will use. Last message on JABBA

→ Good CPUE (important) to get good results quickly

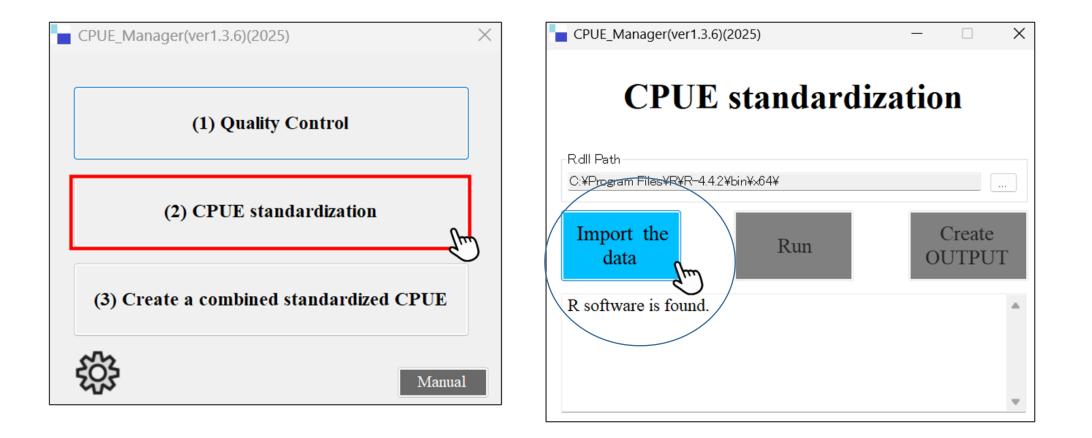

- <u>One Good CPUE</u> can produce good results.
- If You have many CPUE, but if one CPUE NG, then results NG.
- Even good CPUE but with a <u>small error</u> will produce NG results.
- Good CPUE→ key for good results

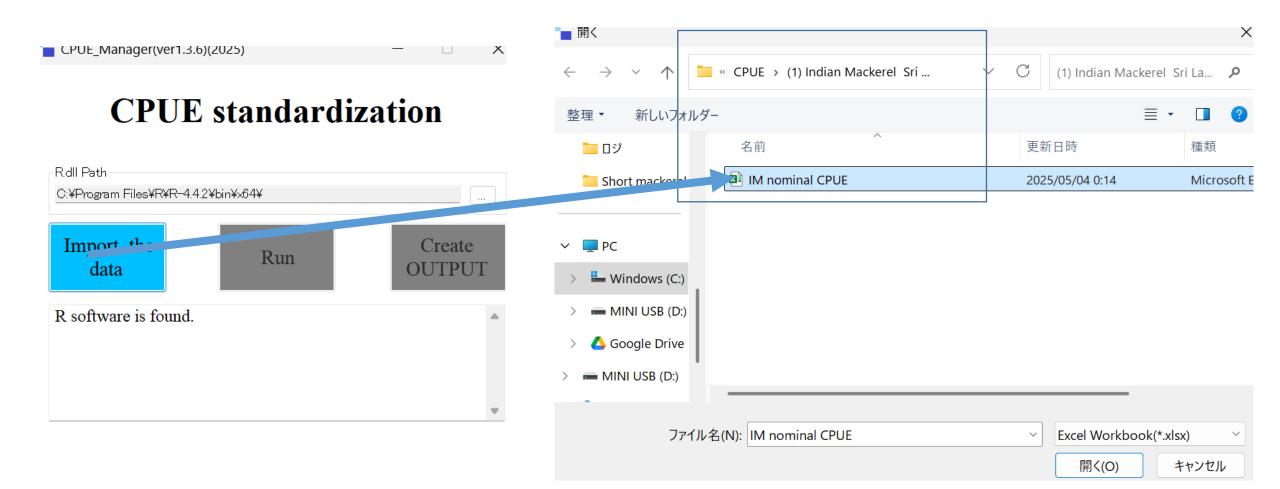
NG: No Good

- 1. General session
 - 1.1 Introduction
 - (1) JABBA
 - (2) New CPUE standardization
 - 1.2 Demo + Practice
 - (1) JABBA
 - (2) CPUE standardization
 - (3) Data process
- 2. WG session
 - 2.1 Demersal WG
 - 2.2 Short mackerel WG
 - 2.3 Carp WG
- 3. Homework (Presentation & submission)
- 4. Sum-up session
 - 4.1 Review, Summary & Recommendation
 - 4.2 Future plan

DEMO SL IM Sri Lanka

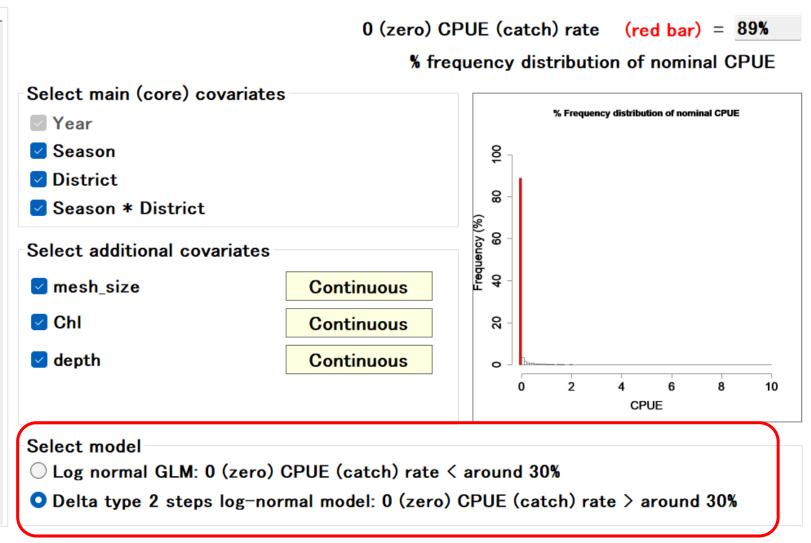
Practice Thai data (in each WG)

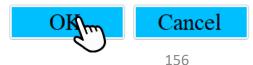



Data are available here

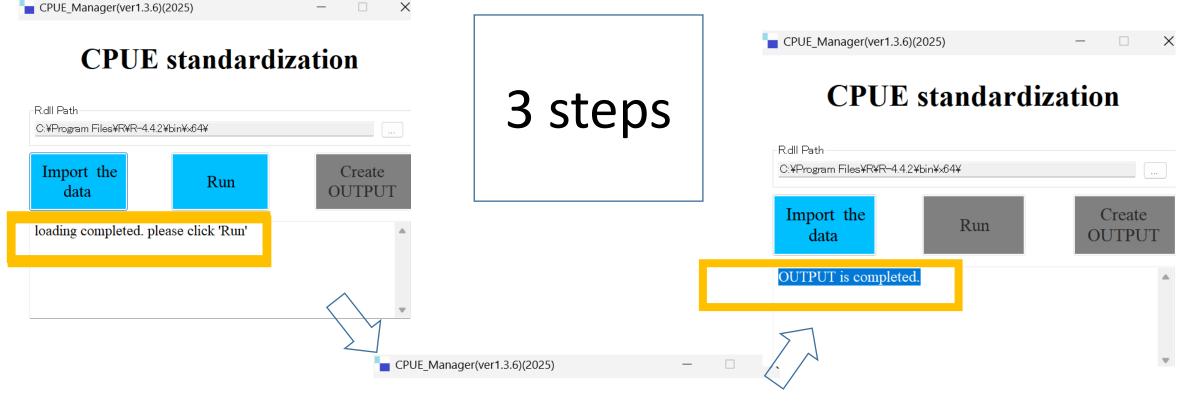
>	4	タイ	>	2025 2	2ndWS >	Data	Practice	>	CPUE	>	(1) Indian Macke	rel Sri Lanka
Ĩ		4			↑↓ 並べ替	春え ~	☰ 表示	ź ~				
	名前			^			更新日時			乔	重類	サイズ
🛯 IM nominal CPUE				2025/05/04	4 0:14	Ļ	Ν	Aicrosoft Excel ワー	245 KB			

Let's practice

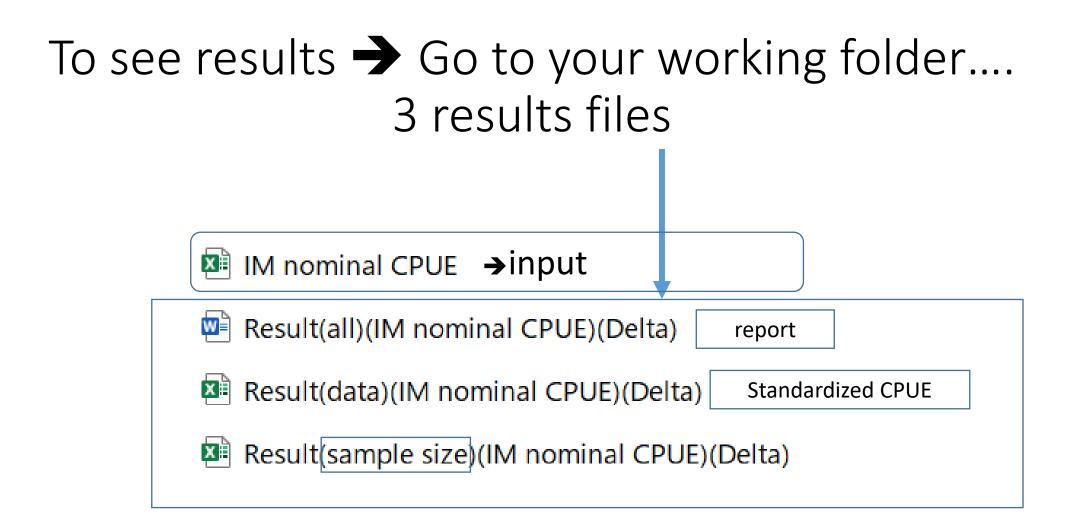



Sample size (n=)

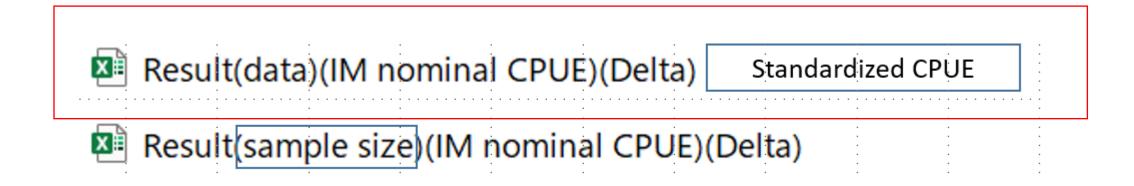
Year	Sample size (n=)
2001	527
2002	374
2003	301
2004	318
2005	281
2006	583
2007	419
2008	358
2009	458
2010	404
2011	253
2012	257
2013	431
2014	75
2015	315
2016	411
2017	317
2018	224
2019	400


(Note) If result of the Delta model is NG 0 CPUE rate is 30%~60%, try log normal GLM Including 0 CPUE.

If still NG, use nominal CPUE.


This is the delta model your will see log normal GLM (each WG)

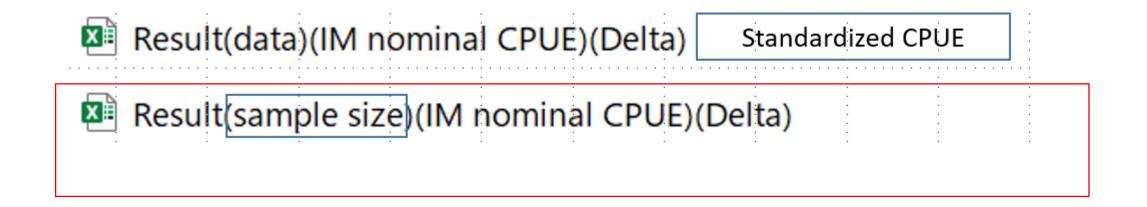
0 catch rate (%)	Model	Short name
0% \sim 30%	Log normal GLM	Log normal model
30% \sim	Zero (0) inflated Delta 2 steps log normal GLM	Delta model



CPUE standardization

R.dll Path		
C:¥Program Files¥R¥R-4	.4.2¥bin¥x64¥	
Import the data	Run	Create OUTPUT
Job completed. plea	ase click 'Create OUTPUT'	
		-

Let's see 2 excel files 1st data set standardized CPUE & 95%CI

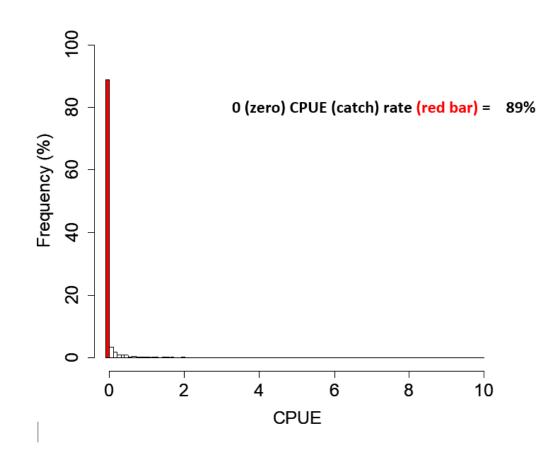

 $1 \qquad \checkmark : \times \checkmark Jx$

А	В	С	D	E
	Observed	Estimated	Lower boundary of	Upper boundary of
	(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
2001	0.06	0.04	0.03	0.07
2002	0.03	0.04	0.02	0.07
2003	0.01	0.03	0.01	0.06
2004	0.05	0.07	0.04	0.12
2005	0.02	0.01	0.01	0.04
2006	0.05	0.06	0.04	0.10
2007	0.01	0.02	0.01	0.03
2008	0.17	0.15	0.11	0.20
2009	0.02	0.03	0.02	0.05
2010	0.04	0.06	0.04	0.08
2011	0.19	0.24	0.16	0.36
2012	0.06	0.10	0.05	0.19
2013	0.23	0.25	0.20	0.30
2014	0.09	0.08	0.04	0.16
2015	0.05	0.07	0.04	0.11
2016	0.01	0.02	0.01	0.06
2017	0.04	0.06	0.03	0.15
2018	0.02	0.02	0.01	0.04
2019	0.02	0.02	0.01	0.04
2020	0.12	0.19	0.08	0.42
2021	0.04	0.03	0.02	0.05
2022	0.16	0.20	0.15	0.26
>	Original scale	Scaled CPUE (Ave=1)	+	

	A	В	C	D	E	
		Observed	Estimated	Lower boundary of	Upper boundary of	
L	<u> </u>	(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)	
2	2001	0.92	0.55	0.55	0.52	-
3	2002	0.43	0.45	0.35	0.55	-
1	2003	0.20	0.34	0.26	0.42	-
5	2004	0.71	0.88	0.85	0.87	-
5	2005	0.28	0.18	0.10	0.30	-
7	2006	0.71	0.75	0.70	0.76	
8	2007	0.18	0.24	0.22	0.24	
Э	2008	2.55	1.83	2.12	1.51	
0	2009	0.24	0.35	0.35	0.33	
.1	2010	0.66	0.76	0.88	0.62	
.2	2011	2.81	2.95	3.08	2.69	
.3	2012	0.87	1.24	1.06	1.38	
.4	2013	3.43	3.06	3.97	2.25	
.5	2014	1.36	1.02	0.80	1.22	
.6	2015	0.72	0.82	0.77	0.82	
.7	2016	0.17	0.23	0.12	0.43	
.8	2017	0.58	0.79	0.54	1.09	
.9	2018	0.27	0.21	0.14	0.33	
0	2019	0.26	0.23	0.19	0.27	
1	2020	1.74	2.31	1.64	3.09	
22	2021	0.56	0.40	0.41	0.37	
3	2022	2.36	2.41	2.87	1.93	
.4	Average	1	1	1	1	
.5						
26						
27						
8						
9						
0						
81						

162

Let's see 2 excel files 2nd data set sample size



	А	В	С	D	E	
1	Year	Sample size (n=)				
2	2001	527				
3	2002	374				
4	2003	301				
5	2004	318				
6	2005	281				
7	2006	583				
8	2007	419				
9	2008	358				
0	2009	458				
1	2010	404				
2	2011	253				
.3	2012	257				
.4	2013	431				
.5	2014	75				
6	2015	315				
.7	2016	411				
.8	2017	317				
9	2018	224				
20	2019	400				
21	2020	78				
22	2021	385				
23	2022	348				
24						
25						
26						
27						
28						
29						
30						
31						
32						

Let's see Result(all)(IM nominal CPUE)(Delta)

Delta type 2 steps log-normal GLM

% Frequency distribution of nominal CPUE

All Covariates significant 🗲 affecting 0 CPUE

The interaction (season*district) is not significant. What does it mean?

ANOVA (Analysis Of Variance) table for delta model to test statistical significances on 0 (zero) CPUE (1st step)								
		Adjusted R ² = 0.31 AIC	C = 3,800 BIC = 4,333					
	Source	df (Degree of Freedom)	χ² (Chi square) (test statistic)	Probabaility (>χ²) (*)				
	Year	21	427.94	0.000				
	Season	3	8.66	0.034				
	District	2	27.12	0.000				
S	eason*District	6	10.88	0.092				
	mesh_size	1	304.78	0.000				
	Chl	1	4.19	0.041				
	depth	42	68.21	0.006				
In	tercept (mean)	1	1 204.93					

Low r2=31%

This model explain only 31% of variance by 7 Covariates

Other 69% are from data errors Uncertainties? The interaction (season*district) is not significant. What does it mean?

O CPUE rate statistically appear same by season*District
→ same ratios (0.89)

Season*District	Sample size(n=)					
Season District	District					
Season	Chilaw	Kalutara	Negombo			
IM1						
IM2						
NE	around 0.89					
SW	-					

Statistically same 0 CPUE ratios (0.89)

Intercept (mean) is significant what does it mean ?

1st step (delta model using logit model)

E [log{q/(1-q)}] = intercept + Year + Season + Season*Area + mesh + Chl + depth

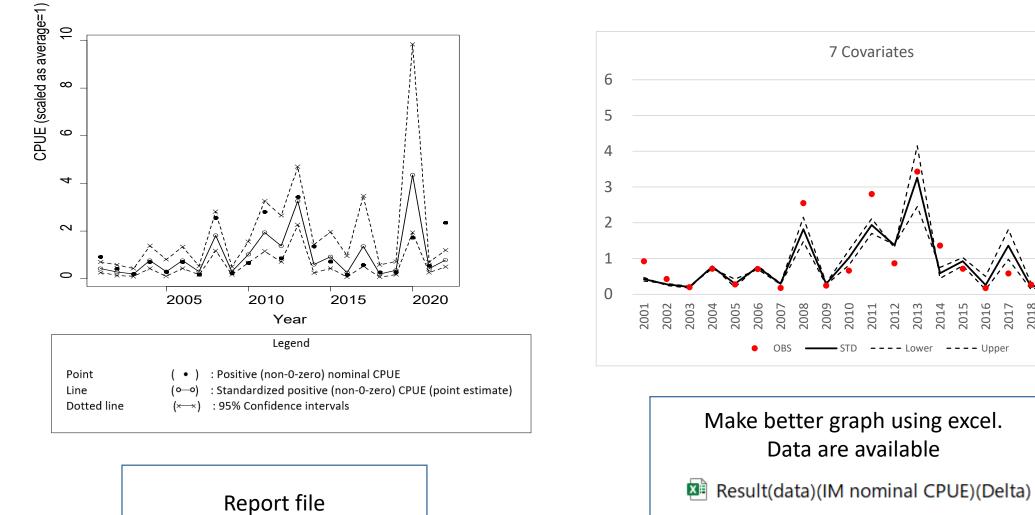
,where q (zero-CPUE rate) ~Binominal (θ)

According to the famous theoretical statistician (Prof. Shono) Significance or no significant of intercept <u>dose not affect the model</u> as it affects its level(value).

Another ANOVA for non 0 CPUE model. model is significant →OK

ANOVA (Analysis Of Variance) Table for log normal GLM model to test statistical significances on positive (non zero) nominal CPUE (2nd step)

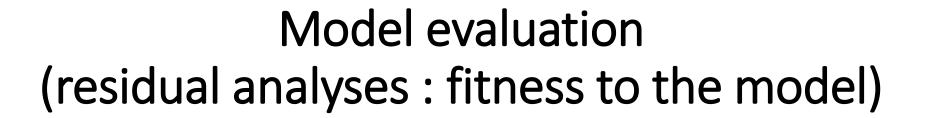
	Adjusted R ² = 0.25 AIC = 2,853 BIC = 3,160								
Sources			Type III SS	Mean	F (test	Drobabaility (SE) (*)			
Sources	df1	df2	(Sum of Square)	Square	statistic)	Probabaility (>F) (*)			
Model	63		512.59	8.14	4.98	0.000			
Year	21		175.32	8.35	5.11	0.000			
Season	3		18.98	6.33	3.87	0.009			
District	2		13.01	6.50	3.98	0.019			
Season*District	6		46.59	7.77	4.75	0.000			
mesh_size	1		151.19	151.19	92.57	0.000			
Chl	1		0.01	0.01	0.01	0.938			
depth	29		107.48	3.71	2.27	0.000			
Error		774	1,264.17	1.63					


[Note] (*) Yellow maker indicates $\alpha < 0.05$ (5%)

This model explains only 25% of variance by 7 **Covariates** Other 75% are from other errors

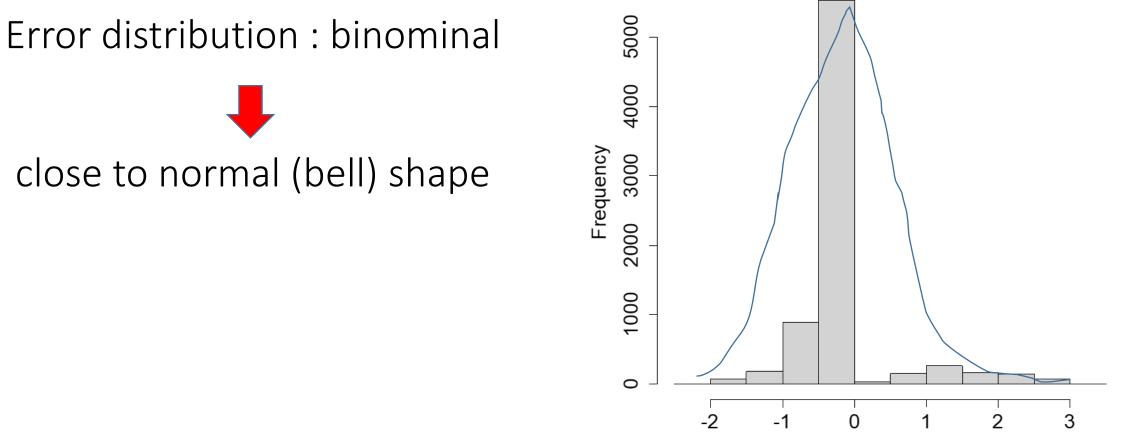
Low r2=25%

Uncertainties?

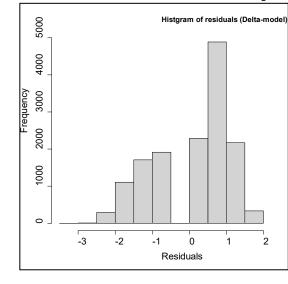

Standardized CPUE

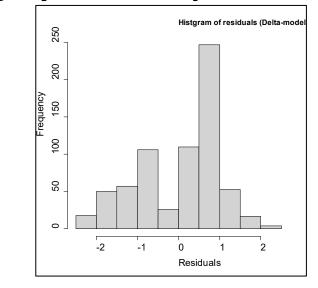
(Original graph)

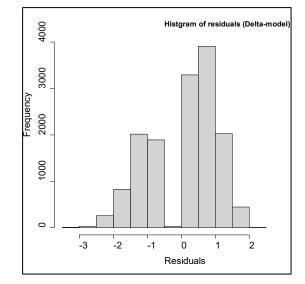
If we use nominal CPUE for JABBA

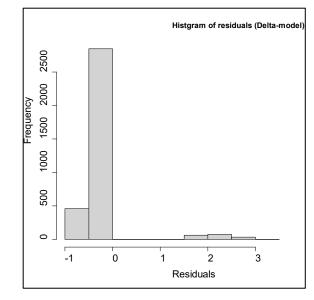

results \rightarrow Very biased \rightarrow CPUE standardization (important)

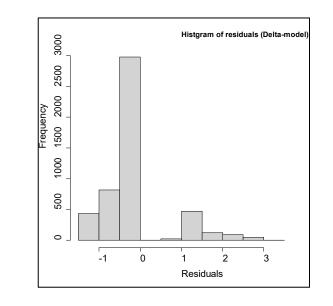
Residual O CPUE rate (delta model)

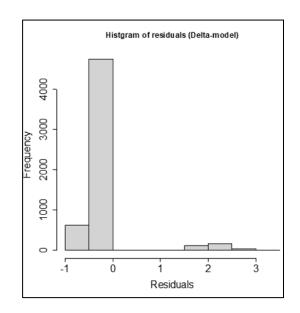

Histgram of residuals (Delta-model)

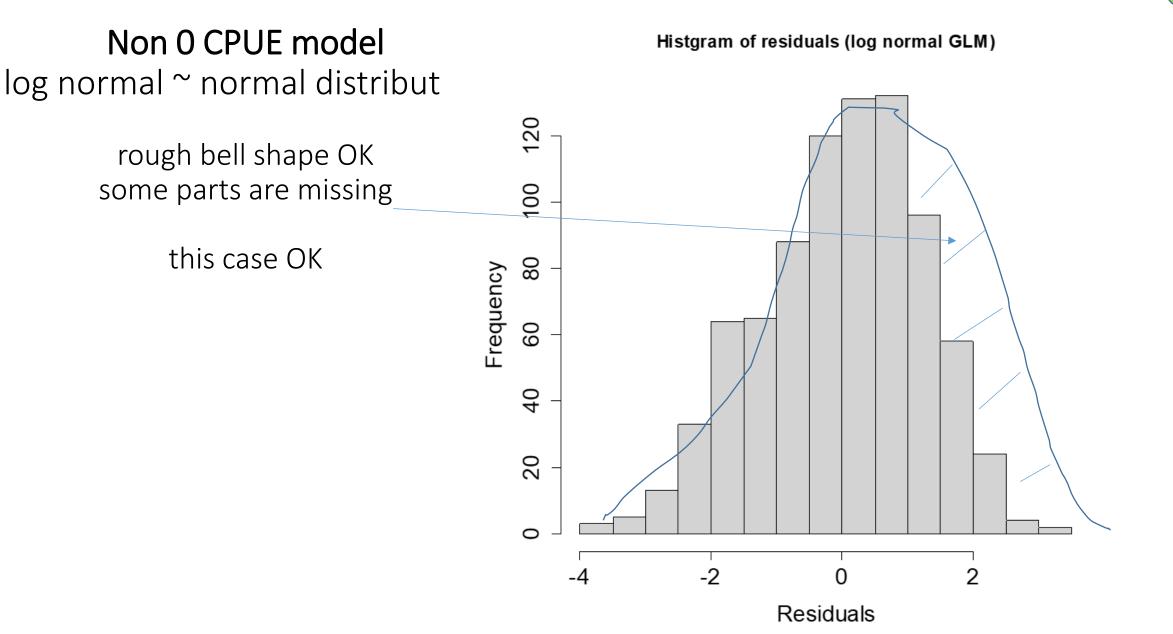


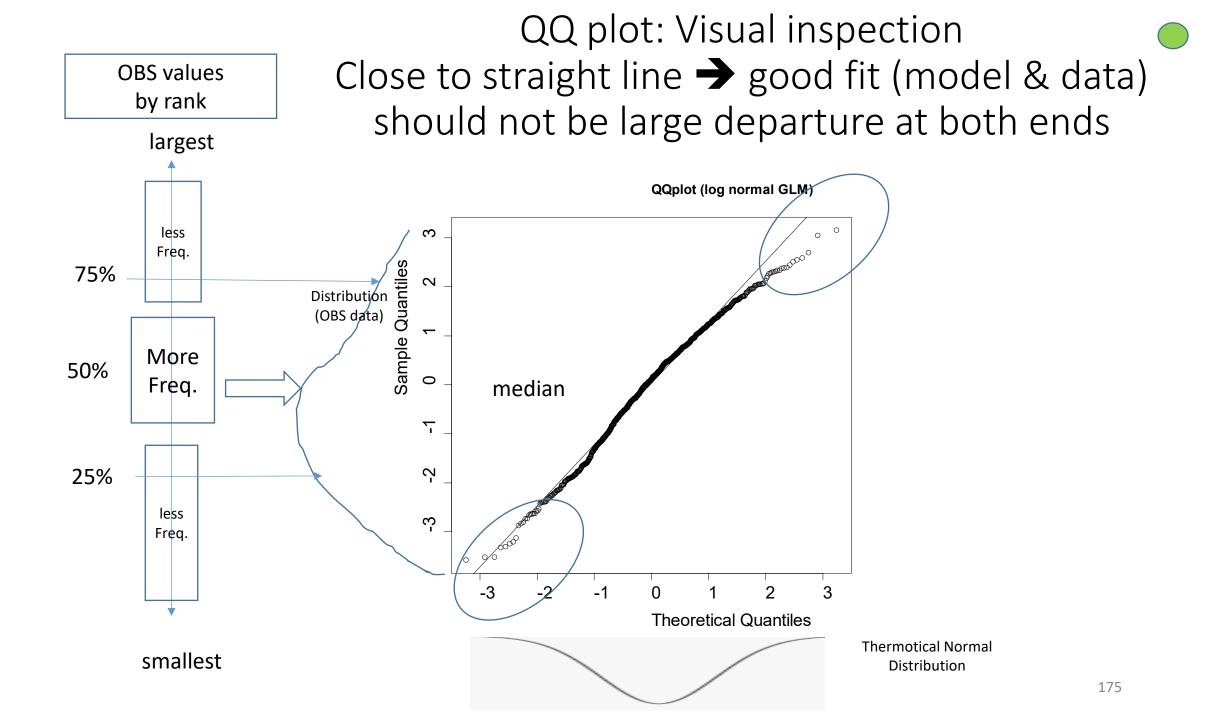

Residuals

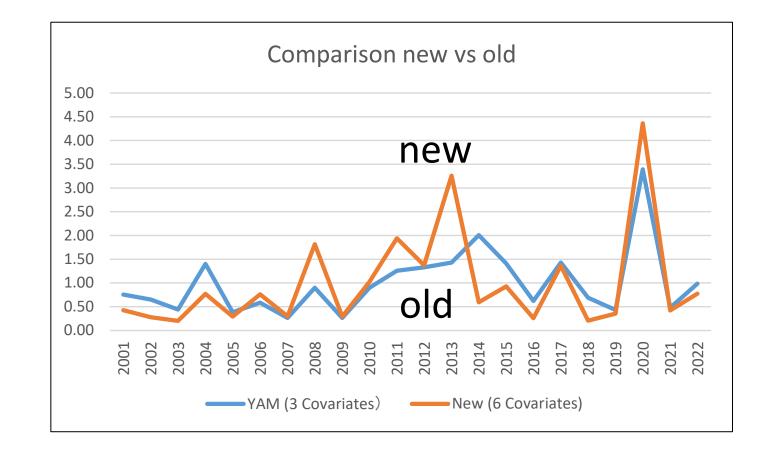

Strange patterns (binominal distribution)

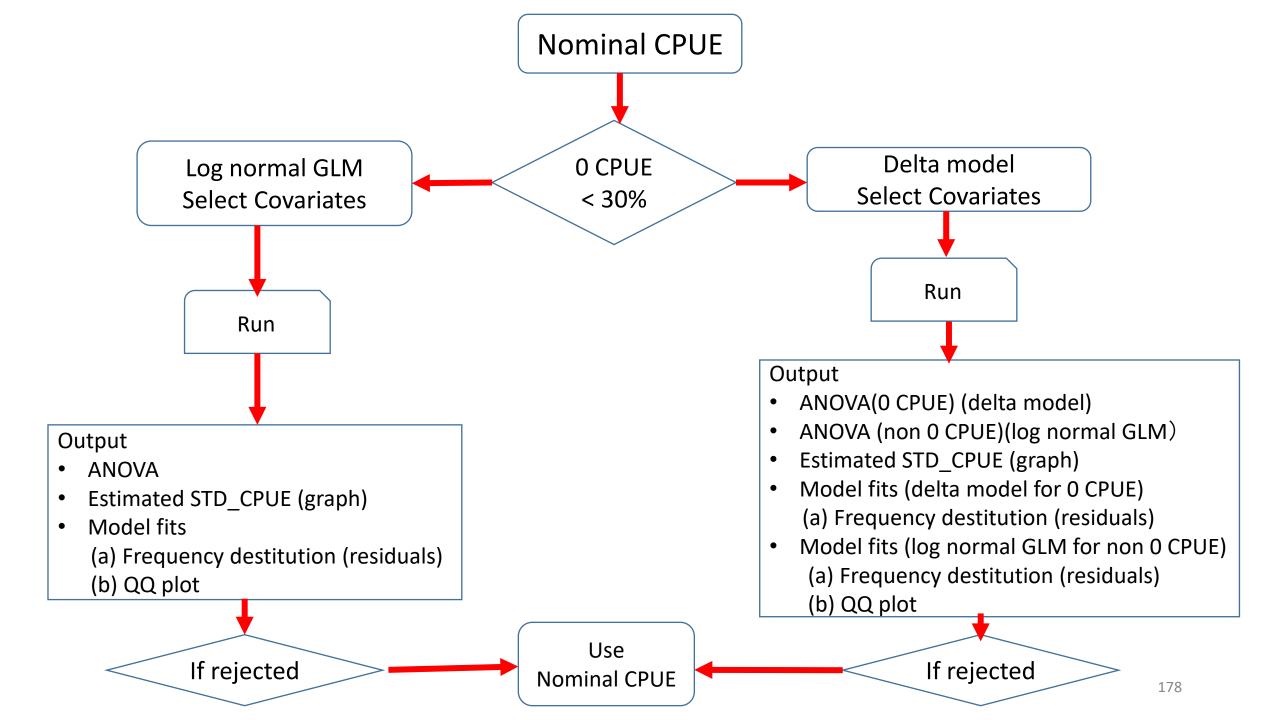

(roughly bell shapes are OK)











Comparisons between **old model(YQM)** vs **new model (7 Covariate)**

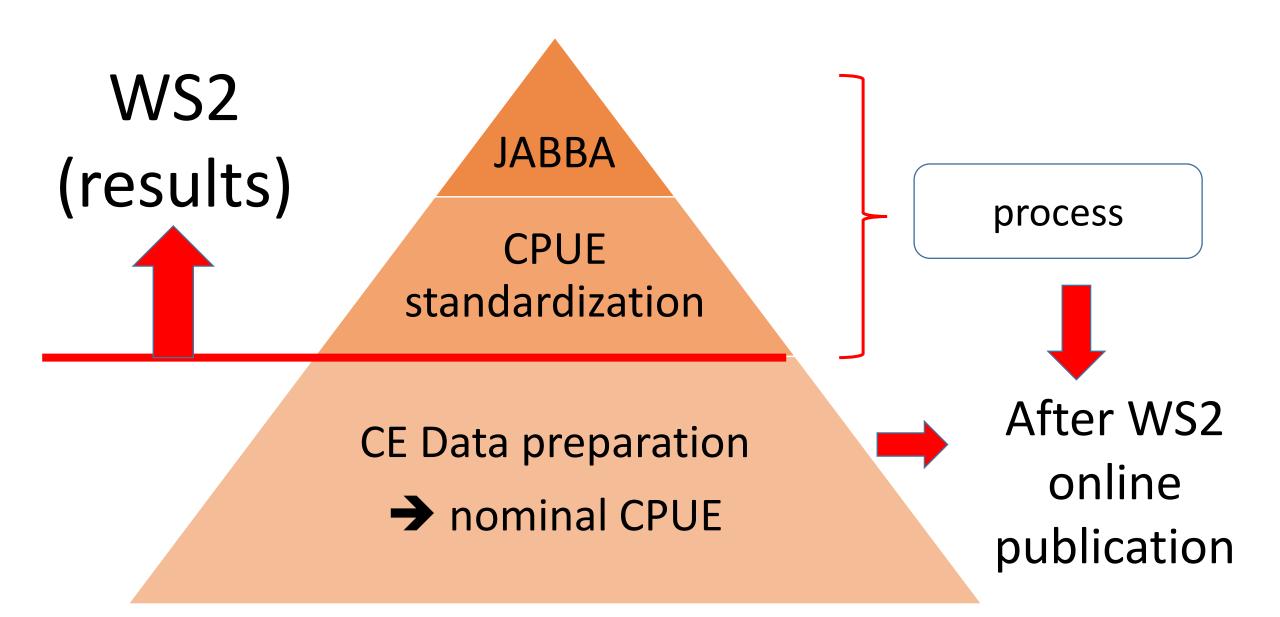
Summary

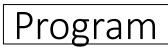
- 89% 0 CPUE -> Delta model
- Zero inflated Delta 2 steps log normal GLM is OK
- 6 Covariates (year, season, district, mesh, Chl & depth) works OK
- Significant Covariates affecting nominal CPUE

Practice IM (Sri Lanka) (by yourself)

+			
> … タイ > 2025 2ndWS >	Data Practice > CPUE >	> (1) Indian Macker	el Sri Lanka
□ ④ ⓒ □ ∿ 並べ替	替え ~ ─ ■ 表示 ~ ・・・		
□ 名前	更新日時	種類	サイズ
IM nominal CPUE	2025/05/04 0:14	Microsoft Excel ワー	245 KB

Practice for Log normal GLM


In each WG (SM & Demersal)



- 1. General session 1.1 Introduction (1) JABBA (2) New CPUE standardization 1.2 Demo + Practice (1) JABBA (2) CPUE standardization (3) Data process
- 2. WG session
 - 2.1 Demersal WG
 - 2.2 Short mackerel WG
 - 2.3 Carp WG
- 3. Homework (Presentation & submission)
- 4. Sum-up session
 - 4.1 Review, Summary & Recommendation
 - 4.2 Future plan

(3) Demo & Practice for Data process

To be conducted later after WS2 by online (ZOOM)

- 1. General session
 - 1.1 Introduction
 - (1) JABBA
 - (2) New CPUE standardization
 - 1.2 Demo + Practice
 - (1) JABBA
 - (2) CPUE standardization
 - (3) Data process
- 2. WG session
 - 2.1 Demersal WG
 - 2.2 Short mackerel WG
 - 2.3 Carp WG
- 3. Homework (Presentation & submission)
- 4. Sum-up session
 - 4.1 Review, Summary & Recommendation
 - 4.2 Future plan

Homework

To be explained in each WG

1. General session

1.1 Introduction

(1) JABBA

(2) New CPUE standardization

1.2 Demo + Practice

(1) JABBA

(2) CPUE standardization

(3) Data process

2. WG session

2.1 Demersal WG

2.2 Short mackerel WG

2.3 Carp WG

3. Homework (Presentation & submission)

4. Sum-up session (Day 5)

4.1 Review, Summary & Recommendation

4.2 Future plan

DAY 1 Summary (need practice)

JABBA (technical & process)

If good CPUE → GOOD results (quick)

If CPUE NG \rightarrow results long time and NG

Remove big outliers before JABBA \rightarrow quicker (Good results)

New CPUE standardization

Additional 4 Covariates (ENV, categories.....)

Practical & useful